
Carnetsoft B.V   functionality datastorage 

 

1 
 

 

 

 

 

 

 

 

 

Data sampling and data storage for research simulators 

 

 

CONTENTS 

 

 

Introduction ............................................................................................................................................................ 2 
1.  Raw data ..................................................................................................................................................... 3 

1.1 Define the data ....................................................................................................................................... 3 
1.2 SetSampleFrequency ............................................................................................................................. 4 
1.3 ClearDataVariables................................................................................................................................ 4 
1.4 AddDataVariable ................................................................................................................................... 4 
1.5 AddDataFunction .................................................................................................................................. 9 
1.6 Create and close a datafile .................................................................................................................. 10 

1.6.1 Create data file .................................................................................................................................... 10 
1.6.2 Subject startup file .............................................................................................................................. 11 
1.6.3 Close data file ..................................................................................................................................... 11 

1.7  Set event codes .................................................................................................................................... 11 
1.8.  Dataformat binary datafiles................................................................................................................. 13 

2.  Data analysis using DataProc.exe ........................................................................................................... 15 
2.1 Introduction .......................................................................................................................................... 15 
2.2 Starting Dataproc ................................................................................................................................. 15 
2.3  Opening a datafile................................................................................................................................ 16 
2.4  Visualization of data ............................................................................................................................ 16 
2.5  Dataprocessing ..................................................................................................................................... 17 
2.6 Other functions .................................................................................................................................... 18 

2.6.1 Changing the name of the outputfile .......................................................................................... 18 
2.6.2 Converting the binary datafile to an ascii file (CSV) with column headers ............................ 18 

3.  Processed Data via script......................................................................................................................... 19 
4.  Driving errors in Student Assessment System ....................................................................................... 20 

WvW/Datastorage research simulators 

2013-2022 
Copyright ©  by Carnetsoft BV 
 

All rights reserved. No part of the contents of this 
document may be reproduced or transmitted in any 
form without the written permission of Carnetsoft 

 



Carnetsoft B.V   functionality datastorage 

 

2 
 

Introduction 

 

Measuring driver performance data is one of the most important functions of a research driving 

simulator. A unique feature of the driving simulator software of Carnetsoft is that it allows the user to 

easily sample time-based safety margins that are considered to be very hard or even impossible to 

measure on the road, and are often impossible to measure in other driving simulators. The most 

important reason for this is that our software uses a high quality logical road network representation (the 

logical road database). Among these variables is the TLC (Time-to-line crossing) that is measured 

accurately both for straight road segments and for road curves. 

 

There are three different types of data that can be measured and stored in this simulator: 

1. Raw data, with a fixed sample frequency, typically 10 Hz. This is the typical type of data that is 

stored on most simulators. It is used for offline data analysis and inspection and consists of 

variables such as vehicle speed, yaw rate, time to line crossing, time headway etc. 

2. Processed data that is measured and analyzed during the simulation and the results are written 

to an ascii file. This consists of data measured and stored in scripts and is typically of a higher 

level than data type 1, the raw data. Process data may consist of a standard deviation of lateral 

position on a certain stretch of road, or the brake reaction time in a specific event. 

3. Driving errors as stored in the student assessment system that comes with the driver training 

simulations. This contains information of the highest level, such as the number of times the 

speed limit was exceeded, or time headway was too small. 

 

This gives the researcher a wide range of data to be analyzed.   

  



Carnetsoft B.V   functionality datastorage 

 

3 
 

1.  Raw data   
 

Traffic.exe and the scenario scripting language generate functionality for binary datasampling and storing 

of variables in binary datafiles. The files can be read and processed by the Dataproc data visualization and 

analysis program. The scriptfile ‘DataProc.sci’ contains some predefined functionality for datasampling. 

DataProc.sci can be included in any script in which binary data sampling and –storage is needed. Although 

the data to be sampled and stored can be specified in script, it may be easier to use the application 

ExpPrep.exe for that purpose. See ExperimentSpecification.pdf for more details.  

It is strongly recommended to always use the program ExpPrep to define the dataset you want to sample, 

because this is the only way to make sure that the correct data variable symbols (numbers) are used. 

 

Scripts allows the user to: 

- define the data to be sampled together with the sampling frequency 

- create (open) and close a binary datafile 

- set event-codes for inclusion in eventfiles. 

 

Data are stored in a \data folder located in the same folder as where the script is located. So suppose 

there is a folder \myexperiment that contains the *.scb (binary scenario script) files, there MUST be a 

folder \data within \myexperiment. If there is no such folder, the data cannot be stored to file. 

 

Here, defining and storing binary datafiles is explained.  

1.1 Define the data  

 

The datarecords that are sampled are defined with the procedures SetSampleFrequency, 

ClearDataVariables, AddDataVariable and AddDataFunction. 

 

Here’s a piece of script (from DataProc.sci) that uses these functions: 

 

Proc( ClearDataVariables ); 

Proc( SetSampleFrequency, 10 ); // sample with 10 Hz to binary file 

EXT_DataDef := DataDef();            // get the data specification filename 

Proc( OpenFileRead, EXT_DataDef ); 

DataType := ReadNumber( EXT_DataDef ); 

While ( DataType >= 0 ) { 

      If ( DataType = 1 or DataType = 2 ) { 

              DataCode := ReadNumber( EXT_DataDef ); 

              Proc( AddDataVariable, DataCode ); 

       } 

       Else { 

              FuncName := ReadString( EXT_DataDef );  

              Proc( AddDataFunction, FuncName ); 

        } 

        DataType := ReadNumber( EXT_DataDef ); 

} 

Proc( CloseFile, EXP_DataDef ); 

 



Carnetsoft B.V   functionality datastorage 

 

4 
 

The function DataDef() returns the name of the data definition file (extension .dd) that was created with 

the ExpPrep.exe tool. In this example, the data definitions are read and added to te data storage system. 

1.2 SetSampleFrequency 

 

Proc( SetSampleFrequency, number ); 

 

For example, Proc( SetSampleFrequency, 10 );  This sets the sample frequency to 10 Hz (i.e. 10 samples 

are stored per second). It is advised to not set this value too high, since higher values result in larger 

binary datafiles. For normal purposes, 10 Hz is advised. By setting a sample frequency, all data are stored 

with the same sample interval. For example, by Proc( SetSampleFrequency, 10 ) all sample intervals are 

quaranteed to be 100 ms. To guarantee this, all values are measured in real time and extrapolated or 

interpolated such that a value is stored for each defined variable every 100 ms. Since analog variables are 

assumed, this extrapolation or interpolation is valid. However, if the user wants to sample discrete values 

that give for example the value 50 on one sample and 100 on the next sample, this method is less 

desirable. In cases like these one doesn’t want interpolation of values. In cases like these it is better to 

store the values in an eventfile. As an alternative, sample frequency may be set to 0 by Proc( 

SetSampleFrequency, 0 ); Setting the sample frequency to 0 ensures that all data are stored in their raw 

format without extrapolation or interpolation with a sample frequency of 10 Hz.   

1.3 ClearDataVariables 

 

Proc( ClearDataVariables ); 

 

This procedure clears all data variables. Suppose you want to sample some variables while driving a 

specific script, but sample another set of variables while driving another script. You need to clear the data 

variables first and in-between. 

  

1.4 AddDataVariable 

 

Proc( AddDataVariable, VarType );  

See the StartDataSampling function in a DataProc.sci file for how this is used. 

 

In this example, the data definition script defines a record with 3 values (actually four, because the 

timestamp d_time is also stored automatically for each record): the vehicle velocity in m/s, the lateral 

position in meters and the gear position, in that order. 

 

AddDataVariable adds a specific variable to the list of variables that will be sampled. A description of 

these variables is in the scriptfile ‘DataProc.sci’. Here's an overview of the variables used and that can be 

found in the program ExpPrep (DataDefinitions Tab): 



Carnetsoft B.V   functionality datastorage 

 

5 
 

 

Symbolic constant Description 

d_velocity velocity of MainTarget: in m/s 

d_acc acceleration of MainTarget: in m/s
2
 

d_latvel lateral velocity of MainTarget: in m/s. If vehicle moves to 

LEFT: positive values. 

If vehicle moves to RIGHT: negative values 

d_dtoint distance to next intersection: in meters. Distance is 

measured from the center of the front bumper to the 

point where the intersectionplane starts. 

d_dfrint distance from last intersection: in meters. Distance is 

measured from the center of the front bumper. 

d_dtoseg distance to the end of the present segment: in meters. 

Distance is measured from the center of the front 

bumper. 

d_latpos Lateral distance between center of front bumber of 

MainTarget and the centerline of the Rightmost DLANE 

(DLane[0]). If the center of the front bumper is to the 

LEFT of this line: positive values. To the RIGHT of this line: 

negative values. 

d_segnum Segment number of MainTarget  

d_pathnum Path number of MainTarget 

d_internum Intersection number if MainTarget is on an intersection 

d_scennum The number of the first active scenario. Since there are 

usually a large number of scenarios active 

simultaneously, this number is of limited value. 

d_gear Gear position of MainTarget (0=free, 1..5) 

d_indicator Indicator status of MainTarget:  

0: IndicatorOff  

1: IndicatorRight  

2: IndicatorLeft, 

3: IndicatorAlarm 

d_rpm Engine RPM of MainTarget 

d_steer Steering wheel angle (in degrees)  

d_wheelangle Front wheel angle (in degrees) 

d_gas Accelerator pedal position as a percentage (0..100) 

d_brake Brake pedal position as a percentage (0..100) 

d_clutch Clutch pedal position as a percentage (0..100) 

d_xpos X coordinate of center of frontbumper 

d_ypos Y coordinate of center of frontbumper 

d_heading Heading of vehicle with respect to the road (in degrees) 

d_traflight Status of trafficlight that MainTarget is approaching: 



Carnetsoft B.V   functionality datastorage 

 

6 
 

0: Absent 

1: Green 

2: Yellow 

3: Red 

4: YellowFlash 

5: YellowRed (German intermediate phase) 

6: Blank   

d_SpeedDif The difference (in m/s) between the actual velocity and 

the maximum allowed velocity according to a set of rules. 

These rules are the rules used by the robot cars. So this is 

the speed difference from the normative model. If this 

value is positive, the MainTarget is driving too fast with 

respect to the normative model. Value is always >= 0. 

d_LaneDirection Indicates whether the lateral position is right or wrong 

with respect to the normative model. Values may be : 

2: OK, or Straight  

1: Right, MainTarget should move to right 

3: Left, MainTarget should move to left 

d_LowestSpeedCause While driving, the actual speed may violate a number of 

different rules that prescribe a maxmum allowed speed. 

The rule that is most seriously violated (i.e. the difference 

between the actual velocity and the maximum velocity 

according to that rule is largest), is returned by 

d_LowestSpeedCause. 

-1 : No speed rule violated 

 0: S_ChangeLead: while changing lanes the speed is too 

high with respect to a lead vehicle on the new lane 

 1: S_Follow : speed too high with respect to lead vehicle 

 2: S_MaxVelocity : speed higher than the maximum 

allowed speed (according to roadsigns or roadtype) 

 3: S_ApproachOnMyLane : speed to high with respect to 

oncoming vehicle on my lane 

 4: S_Overtaken : I am being overtaken and I’m 

accelerating 

 6: S_RedTrafficLight : Should stop for red traffic light 

 7: S_YellowTrafficLight : should stop because of yellow 

traffic light 

 8: S_EmergLeft : Vehicle from left takes unjust right of 

way, you should stop in order to avoid accident 

 9: S_RowLeft: should slow down to give vehicle from left 

right of way 

10: S_EmergRight : Vehicle from right takes unjust right 

of way, you should stop in order to avoid accident 



Carnetsoft B.V   functionality datastorage 

 

7 
 

11: S_RowRight : should slow down to give vehicle from 

left right of way 

12: S_EmergStraight : Vehicle from ahead takes unjust 

right of way, you should stop in order to avoid accident 

13: S_RowStraight : should slow down to give vehicle 

from ahead right of way 

14: S_AdaptInCurve : speed too high for curvature (while 

driving in curve) 

15: S_AdaptApproachCurve: speed too high for curvature 

(while approaching  curve) 

16: S_AdaptInInterCurve : speed too high for curvature 

(while driving on intersection and turning left or right) 

17: S_AdaptApproachInterCurve : speed too high for 

curvature (while approaching intersection and wanting to 

turning left or right) 

d_WheelError The deviation of the frontwheel angles from the 

normative wheel angle (given an ideal path). The 

deviation between the actual frontwheel angle and the 

roadgeometry (normative angle), in degrees (0..360). If 

on straight road the normative angle is the angle of the 

straight segment. If on a curved segment, the normative 

angle is the tangent of the angle of the line from the 

centerpoint of the arc to the coordinates of the center of 

the front bumper.  

d_Tlc Time-to-line crossing to the lane edgeline. This is the 

geometrically accurate version. If vehicle is moving to left 

edgeline: positive. If vehicle is moving to right edgeline: 

negative. 

d_SteerError The deviation between the actual steeringwheel angle 

and the required steeringwheel angle, in degrees. 

Required steeringwheel angle is computed from vehicle 

longitudinal velocity, yaw rate and frontwheel slipangles. 

Requires an accurate vehicle dynamics model, like the 

internal model of StTraffic 

d_Thw Time headway, in seconds, between first leadvehicle in 

same lane as MainTarget and MainTarget. Computed as 

distance/velocity (in m/s) of MainTarget. Distance is 

computed as distance along path between rearbumper of 

leadvehicle and frontbumper of MainTarget. Infinit is 

velocity of MainTarget = 0.  

d_Ttc Time-to-collision, in seconds, between first leadvehicle in 

same lane as MainTarget and MainTarget. Computed as 

distance/relative velocity (in m/s) of MainTarget. 



Carnetsoft B.V   functionality datastorage 

 

8 
 

Distance is computed as distance along path between 

rearbumper of leadvehicle and frontbumper of 

MainTarget. Infinit is velocity of MainTarget = 0. Relative 

velocity is velocity of MainTarget – velocity of lead 

vehicle. If relative velocity <= 0, then TTC is computed as 

Infinit. 

d_Tti Time-to-intersection, in seconds. Computed as distance 

along path (between front bumper of MainTarget and 

start of intersection plane) to intersection/velocity of 

MainTarget (m/s). Infinit is velocity is 0. 

d_TtcOpp Time-to-collision between frontbumpers of MainTarget 

and a vehicle coming from opposite direction in same 

lane as MainTarget. Computed as distance along 

path/(velocity of MainTarget + velocity of oncoming 

vehicle). 

d_StopDis Current stopping distance, computed as –

Velocity
2
/(2*acc). Defined only if acc (acceleration) <= -

0.1. Else the value is Infinit. 

d_LeadDis Bumper to bumper distance (in meters) along path to 

first leadvehicle in same lane as MainTarget 

d_LeadVel Velocity (in m/s) of first leadvehicle in same lane as 

MainTarget 

d_RearDis Bumper to bumper distance (in meters) along the path to 

first rearvehicle. Rearvehicle is not necessarily in same 

lane as MainTarget.  

d_RearVel Velocity (in m/s) of first rearvehicle. Rearvehicle is not 

necessarily in same lane as MainTarget. 

d_ApprDis Bumper to bumper distance (in meters) along the path to 

first approaching vehicle from opporite direction (on 

same road as MainTarget). Approaching vehicle is not 

necessarily in same lane as MainTarget.  

d_ApprVel Velocity (in m/s) of approaching vehicle from opporite 

direction (on same road as MainTarget). Approaching 

vehicle is not necessarily in same lane as MainTarget. 

d_LeftDis Distance to intersection (in meters to start of intersection 

plane) of first vehicle approaching the first oncoming 

intersection from left. 

d_LeftVel Velocity (in m/s) of first vehicle approaching the first 

oncoming intersection from left. 

d_RightDis Distance to intersection (in meters to start of intersection 

plane) of first vehicle approaching the first oncoming 

intersection from right. 

d_RightVel Velocity (in m/s) of first vehicle approaching the first 



Carnetsoft B.V   functionality datastorage 

 

9 
 

oncoming intersection from right. 

d_AheadDis Distance to intersection (in meters to start of intersection 

plane) of first vehicle approaching the first oncoming 

intersection from opposite direction (with respect to 

MainTarget). 

d_AheadVel Velocity (in m/s) of first vehicle approaching the first 

oncoming intersection from opposite direction (with 

respect to MainTarget). 

d_SteerSpeed steeringwheel rotation velocity in degrees/second 

d_Yawrate Yawrate (rotationspeed of vehicle longitudinal axis) 

d_Tlc_1 Crude approximation of TLC with respect to the lane 

edgelines. If moving to the right edgeline: Negative, 

computed as distance between front right of MainTarget 

and right edgeline/lateral velocity. If moving to the left 

edgeline: Positive, computed as distance between front 

left of MainTarget and left edgeline/ lateral velocity. 

d_Latacc Lateral acceleration computed as yawrate * longitudinal 

velocity of MainTarget 

 

Deprecated (and invalid) are: d_steer_raw, d_gas_raw, d_brake_raw, d_clutch_raw, d_steer_torque and 

d_brakeforce.  

 

1.5 AddDataFunction 

 

Proc( AddDataFunction, “UserDefinedFunctionName” ); 

 

Make sure that the name of the user function is entered between string symbols (“name”). 

The UserDefined Function must be defined before using the AddDataFunction procedure. Furthermore: 

1) The UserDefined function must not have any inputparameters 

2) The UserDefined function must always return a value 

 

For example: 

 

Define Function FuelConsumption() { 

    FuelConsumption := fuelflow();   // fuel consumption in liters/minute 

} 

…. 

…. 

Proc( AddDataFunction, “FuelConsumption” ); 

 

This will result in sampling the fuelconsumption of the MainTarget (the car you are driving in). By this you 

can sample and store any variable you wish, as long as you define a function that returns the variable. 

 



Carnetsoft B.V   functionality datastorage 

 

10 
 

UserDefined function values are always stored in the record AFTER the variables defined by 

AddDataVariable. 

 

1.6 Create and close a datafile 

 

1.6.1 Create data file 

Only one binary datafile can be opened for storing data at the same time. A datafile is created and openen 

by the procedure OpenData: 

 

Proc( OpenData, string1, string2 ); 

 

string1 contains the binary file name without the extention. The system adds the extention  ‘da0’ to the 

filename. 

string2 contains a text string that is included in the header of the datafile. 

 

For example: 

 

Proc( OpenData, ‘’subject01”, “experiment X12” ); 

 

This procedure does the following things: 

- it creates a binary datafile with name ‘subject01.da0’, with the recordstructure defined by the 

AddDataVariable and AddDataFunction procedures. If the file already exists, it is overwritten. 

- The text “experiment X12” is stored in the header of the file 

- from that moment on data sampling is started with the frequency specified by the procedure 

SetSampleFrequency, until the file is closed (see next paragraph) 

- it creates an eventfile with the name ‘subject01.evt’, in which discrete event can be stored that are 

time-locked to the binary data stream 

 

The name of the file can be extracted in two ways: 

1. Via the Subjects startup file that was created with ExpPrep. This file has an extention *.exp and 

consists of three lines: 

a. The name of the data analysis filename. If the experiment has been started from the 

*.exp file, the name can be retrieved via the SubjectIdent() function 

b. The name of the data definition (*.dd) file 

c. The name of the script (*.scb) file. 

2. If a file named subjectfile.txt is located in the \data folder under the folder where the script is 

located, this file is read and the name in the file is used as a file name. 

 

Examples of both methods are given here. 



Carnetsoft B.V   functionality datastorage 

 

11 
 

1.6.2 Subject startup file 

If the experiment has been started via an *.exp file, then the function ExpDataDefined() returns the value 

true. In that case the datafile name can be read from script with the SubjectIdent() function, see next 

example. 

 

Var { Sample; } 

String { D_BaseFName; } 

…. 

Sample := ExpDataDefined(); 

If ( Sample = True ) { 

    D_BaseFName := SubjectIdent(); 

    Proc( OpenData, D_BaseFName, “Experiment 1”); 

} 

 

This method is used is you want to create subject startup files with ExpPrep, and then start the 

simulation/experiment via the <Start Simulation> button in control.exe. Starting a simulation with the 

<Start Simulation> button allows you to start the following file types: 

- *.exp file 

- *.scb file 

 

1.6.3 Close data file 

Data sampling continues on the background of Traffic.exe until the procedure CloseData is called as: 

 

Proc( CloseData ); 

 

From that moment on: 

- Data sampling is terminated 

- The binary datafile (extention .da0) is flushed and closed 

- The event file (extention .evt) is flushed and closed 

 

If you don’t use the CloseData procedure explicitly in our script, the files are flushed and closed on 

termination of the experiment. This is when the user applies the <Stop Simulation> button in Control.exe. 

 

While the system is sampling data, all data are temporarily stored in a databuffer in the internal memory 

of the computer, until the buffer is full. Then the buffers are flushed and stored to external memory as a 

large datablock. 

1.7  Set event codes 

 

Together with the binary datafile, an eventfile is created with the same name as the binary datafile, but 

with extention .evt. The user is responsible for filling the eventfiles with data. 

 



Carnetsoft B.V   functionality datastorage 

 

12 
 

For data analysis it is often convenient to store events in an eventfile. You can then, for example, indicate 

when a certain scenario 20 starts and indicate the end of scenario 20 with the code 201 or whatever code 

you like. This facilitates the selection of datablocks during data analysis. Events can also be stored if 

something specific occurs, for example to signal when a lead vehicle starts to brake. If you then want to 

analyze the driver’s brake response to this, the time-relation between brake pedal values and this event 

can be analyzed immediately, if you also store the brake pedal signal. 

 

To store events in the eventfile, the following procedure is applied: 

 

Proc( SetEventCode, <number> ); 

 

as in Proc( SetEventCode, 20 ); 

 

Suppose you want to indicate the start of a scenario and the end of a scenario with eventcodes: 

 

Define Scen[20] { 

    Start { 

               When ( Part[MainTarget].PathNr = 40 ); 

               Proc( SetEventCode, 20 ); 

               …. 

     } 

    End { 

               When ( Part[MainTarget].PathNr = 54 ); 

               Proc( SetEventCode, 201 ); 

    } 

} 

 

The eventfile is a plain ASCII file with the following structure: 

 

<Header, containing the text entered in Proc( OpenData, …, … ) > 

eventcode timestamp 

eventcode timestamp 

etc. 

 

For example: 

 

experiment X12 

    20     10.030 

    21     16.701 

   120    24.030 

    22     26.503 

   121    34.893 

    23     39.843 

 



Carnetsoft B.V   functionality datastorage 

 

13 
 

The timestamp is the time since the present simulation started and is synchronized with the timestamp 

values in the binary data file. Timestamp is equal to the system clocktime. 

 

If you want to sample eventdata with external time references, such as heartrate data, you may want to 

use and alternative version: 

 

Proc( SetTimeAndEventCode, <number>, <external clock value> ); 

 

Suppose you sample R-top values together with a timevalue on an external computer. These values can 

then be send to the present simulation with WriteUdp and ReadUdp functions. Upon arrival of a heartrate 

value, these values can be stored with the SetTimeAndEventCode procedure, while other useful events, 

like button presses or scenarionumbers can be stored in-between. 

1.8.  Dataformat binary datafiles 

 

The binary datafiles start with a header of 2048 bytes. The number of (the sum of ) datavariables and 

userdefined functions must be <= 32. So you cannot sample more than 32 variables at the same time. 

 

The header consists of the following: 

 

struct DataHeader { // 2 kb header block 

    // first 1k block 

    char ident[32];  // contains the value ‘DataProc’ 

    int version ;   // contains the version: 2 

    int subversion;  // contains the subversion: 0 

    int datasize;         // not used 

    int nrfields;         // number of variables used (sum of datavariables  

// and userfunctions: maximally 32 

    int targetid;         // allways 0: MainTarget  

    char targetname[32];  // contains the string “Cabin car” 

    float sampleinterval;  // sample frequency 

    int  storagemode;     // 1 = raw values without time interpolation:  

//  if SampleFrequency has been set to 0 by user 

                           // 0 = time-interpolated sampling with frequency set by user: 

//  if frequency has been set by user to another value  

//  than 0. This is the normal operating mode. 

    char filename[64];  // datafilename as specified by user 

    char storedate[32];  // date and time of data storage 

    char text1[128];  // the text set by the user 

    char text2[128];  // not used 

 

    // second 1k block 

    char fieldnames[32][32]; // record definition: names of datavariables and functions  

// in sequential order 



Carnetsoft B.V   functionality datastorage 

 

14 
 

}; 

 

After the header there is a sequence of datarecords with the following structure: 

timestamp  <sizeof(float)> 

followed by the values of all datavariables, in order of  addition,  <sizeof(float) > except: 

 d_LaneDirection  <sizeof(char)> 

             d_traflight  <sizeof(char)> 

 d_gear    <sizeof(short)> 

             d_indicator     <sizeof(short)> 

             d_segnum      <sizeof(short)> 

             d_pathnum     <sizeof(short)> 

             d_internum     <sizeof(short)> 

             d_scennum     <sizeof(short)> 

             d_LowestSpeedCause <sizeof(short)> 

followed by the values of all data functions, in order of addition  <sizeof(float) > 

 



Carnetsoft B.V   functionality datastorage 

 

15 
 

2.  Data analysis using DataProc.exe 
 

2.1 Introduction 

 

For visual inspection of the data and data analysis the Dataproc program is available. The binary datafiles 

with extention .da0 are read by Dataproc, together with the eventfile and variables can be selected, 

visualized and analyzed. The analyzed data are written to an ASCII file with keywords to indicate the 

meaning of the data.  

 

The following figure shows a snapshot of Dataproc, with vehicle speed, steering wheel angle, lateral 

position and tlc. 

 

 

 

2.2 Starting Dataproc 

 

Dataproc is started by clicking on the Dataproc icon on the desktop. The first thing to do is open a datafile.  



Carnetsoft B.V   functionality datastorage 

 

16 
 

2.3  Opening a datafile 

 

To open a datafile, select <files> from the mainmenu and then <Open …> 

 

Then a fileselection box pops up where all files with the extention *.da0 are listed.  

 

Click on a file, and then on the button <Open>. The file the is opened and a list of all continuous variables 

is shown in the <Select Continuous Variables> listbox. All discrete variables are shown in the <Select 

Discrete Variables> listbox, see the following figure.  

 

The program treats all variables and data functions as continuous except the following: 

- d_segnum  Segment number 

- d_pathnum  Path number 

- d_scennum  Scenario number 

- d_internum  Intersection number 

- d_traflight  Traffic light status 

 

These are discrete variables that have no computational meaning, but serve as indicators for navigating 

through the file.  

 

In this case, a scrollable list of all continuous variables that were sampled in the experiment is shown. In 

this example, there was only one discrete variable sampled: the segment number. This can be used to 

distinguish all road segments traversed during the experiment.  

Furthermore, a list of event values is shown. These are all event codes that were registered during the 

experiment. If you click on one of these values, the file is repositioned from that event. In the lowest 

(lightblue) graph, all these events are shown as vertical lines with the event code next to it. 

 

Now, continuous and discrete variables can be selected. Click on a variable in the continuous variables list 

and press the <Add> button. Up to 5 different continuous variables can be added to the charts and only 

one discrete variable can be added. After clicking on the <Add> button, a graph is added to the charts, for 

the continuous variables. If you select and add a discrete variable the following happens: 

- the scrollable list <Discrete values> is filled with all sequential values of the discrete variable. In this 

case, all segmentnumbers are shown as they were sequentially traversed. 

- The blue graph is filled with the values of the added discrete variable, indicated by vertical lines that 

signal the start of the repective number, together wit the value of the discrete variable. 

 

2.4  Visualization of data 

 

Up to 5 continuous variables can be visualized simultaneously. To select other variables, press the <Clear> 

button next to the list of continuous variables, and add new variables. The file can be scrolled by the 

horizontal scrollbar at the bottom of the window. Or you can select a discrete value or an eventcode and 

jump to that position in the file.  

 

If you position the mouse pointer in any of the graphs, the value of the respective variables is displayed in 

the textboxes in the upper right corner of each graph. The timestamp is then displayed in the lower-left 

panel. 

 

 



Carnetsoft B.V   functionality datastorage 

 

17 
 

When all data are read from the input file, all graphs are scaled between the lowest and the highest 

values that occur within the file (with some exceptions, like the Tlc because these have infinite values as 

lowest or highest values). The user can change the scale of the Y-axis as follows: 

- position the mouse cursor in the respective graph  

- press the right mouse button. A small menu occurs, that allows to to change the range of the Y- axis. 

Press this. 

- a popup window is displayed that shows the present Y axis maximum, its minimum, the number of 

main ticks and the number of subticks.  

- Fill out the values that you want and press the <Ok> button. Now the grah is redrawn with the new Y-

axis scale. 

If you want the original values back, press the <Set default values> button. 

 

2.5  Dataprocessing 

 

Dataprocessing can be done in two ways: 

- Make a vertical line and compute the value of the variable at that X position 

- Make a block, consisting of a startline and an endline and compute measures on all values within that 

block. 

 

To make a line do the following: 

- Click on the <Make line> button 

- The position the mouse cursor in any graph and click the left mouse button.  

- The led light at the left side of the graph turn into yellow, to indicate that this variable has been 

selected 

- Select the variable you want to measure by clicking in the appropriate graph 

- Press the <Value(s)> button if you want to know the value of that variable at that point in time, or 

click the <Time value(s)> button to write the accompanying timestamp to the output file 

These values are displayed in the blue messagebox at the lower-left side of the window. An outputfile is 

ALWAYS created. The name of the outputfile is displayed above the blue messagebox. The default 

filename is the name of the inputfile with the extention .out. If you process the same files more than 

once, the older output files are then overwritten. Because of that, it is recommended to change the name 

of the outputfile (see later). 

 

To make a block, do the following: 

- Click on the <Make block> button 

- position the mouse cursor in any graph and click the left mouse button to create the start of the block 

- position the mouse cursor in any graph and click the left mouse button to create the end of the block: 

two vertical lines now indicate the block  

- Select the variable you want to measure by clicking in the appropriate graph 

- The block consists of a vector of values. You can make the following computations on this vector, 

indicated by pressing the respective button: 

- Average: gives the mean value 

- Median : gives the median value 

- Sd : gives the standard deviation 

- Maximum : gives the highest value 



Carnetsoft B.V   functionality datastorage 

 

18 
 

- Minimum : gives the lowest value 

- All : prints all values to the output file 

- Percentiles: gives a list of percentiles, for positive and negative values separately: (10
th

, 20
th

, 30
th

, 

40
th

, 50
th

, 60
th

, 70
th

, 80
th

 and 90
th

 percentile values) 

- TimeDif : the length of the block in seconds. 

 

2.6 Other functions 

 

2.6.1 Changing the name of the outputfile 

 

To change the name of the outputfile do the following: 

- in the main menu, select <Files> followed by <Save as…>. 

- a file selection box appears in which you can make a new filename. Only non-existing filenames are 

accepted. The extention “.out” is added by the program. 

 

The only purpose of this is to change the name of the outputfile with all processed data. All data are saved 

automatically as you process the data, so you never need to save the file explicitly.  

 

2.6.2 Converting the binary datafile to an ascii file (CSV) with column headers 

 

To export the file to a comma separated variables  ascii format output do the following: 

- in the main menu, select <Files> followed by <Convert to ascii …> 

- a file selection box appears in which you can make a new filename. The extention “.dat” is added by 

the program. 

 

The ascii files can be processed by other programs like Excel. 

 



Carnetsoft B.V   functionality datastorage 

 

19 
 

3.  Processed Data via script 
 

Processed data are data that are measured, analyzed and stored DURING the simulation. After the 

experiment trial, you have these data available which can save a lot of time spent on data processing.  

DataProc.sci contains some functionality for this, and it’s easy to extend this in script. 

 

In this method, you create an ascii file (using script) and fill it with the appropriate values. 

 

All examples are derived from DataProc.sci. 

 

In the different example experiments that you can find in the installation, different versions of 

DataProc.sci are used, each one tuned to the experiment at hand. In most of these DataProc.sci's you will 

find a scenario named PROCESSDATA, for example: 

 

Define Scenario[PROCESSDATA] { 

 

}  

 

That writes data every 30 seconds via a function named WriteAsciiData(). This writes the average and 

standard deviation of speed and of lateral position during the past 30 seconds. 

 

With a little knowledge of the script language you can modify this to store tha data you need. 

 

 



Carnetsoft B.V   functionality datastorage 

 

20 
 

4.  Driving errors in Student Assessment System 
 

The highest level type of data that can be stored consists of driver errors that are measured as part of the 

student assessment system in the driver training software modules. This is explained in detail in 

CarnetManualLHD.pdf. 

 

The SAS is the central part of the simulator training. Every student has a spreadsheet (Excel 

spreadsheet) with the results stored. Each student has a separate spreadsheet to store the progress data. 

When a new student starts the training, a new spreadsheet has to be created for that student. These data 

can be used in the research simulator as well and can be useful when the ‘quality of driving’ has to be 

assessed. There are around 40 ‘lessons’ available, ranging from simulated highway driving to driving in 

rural areas, on roundabouts and in villages and towns. Also night driving, driving in slippery road 

conditions or in fog is simulated.  

 

These simulations can be modified by the user by changing and recompiling the scripts. Normally, a virtual 

instructor gives feedback on driver errors, but this can be disabled via IOConfig.exe. The scripts also give 

instructions via graphical popups, which can be disabled in the script.  

 

For every subject, a new SAS spreadsheet has to be created. This can be done in two ways: 

- Click on the NewStudent desktop icon, and add a new subject (for example p01).  

- All spreadsheets are located in c:\DriveSim3\Carnetsoft\SimCarnet\Students. Open this folder and 

copy LVSblanco.tem to <subjectname>.xls, for example: 

copy LVSblanco.tem p01.xls 

 

Every spreadsheet has a tab for each lesson, and each lesson has 10 columns to store data, so a specific 

lesson can be stored 10 times. This is enough for most experiments where the number of within-subject 

repeated measurements is less than 10. 

 

Make sure you have a set of spreadsheets (SASses) prepared, via the new Student application, for 

example p01.xls, p02.xls, etc. one for each subject/condition combination. The names of the *.da0 (raw 

data files) and the *.txt (processed data) files are created by setting the proper name in the 

\data\subjectfile.txt file.  

 

To start an experiment using the SAS data, while measuring raw data plus processed data, do the 

following: 

 

Lets say you want to use \2-TrafficParticipation\P-Traffic1 and you want to name the files p01.*, for 

example p01.da0, p01.txt and p01.xls (for the driver errors). 

 

-  go to the \data folder within 2-TrafficParticipation and edit (using TextPad 4) subjectfile.txt. This 

contains the name of the raw and processed data files. Change the contents into p01 and save 

the file 

- start the simulator  

- press <Student data > button. 

- press <Select student> button, select the correct subject, in this case p01 (which is p01.xls) 

- if the database has been loaded (takes a while), select the proper script, P-Traffic1 in this case, and press 

<Start Lesson> 

- After the simulation (or lesson as it is called here) is finished, the data are stored in the spreadsheet, and 

the raw data plus processed data are stored in the \data folder within the folder where the 

selected ‘lesson’ is located. 

 

 


