
Carnetsoft BV Description functionality scenario scripting language

1

Scenario script language

WvW/scenario scripting language

2013-2022 Copyright © by Carnetsoft BV

All rights reserved. No part of the contents of this

document may be reproduced or transmitted in any

form without the written permission of Carnetsoft BV

Last update: November 2022

Carnetsoft BV Description functionality scenario scripting language

2

TABLE OF CONTENTS

1 GENERAL.. 4

1.1 Colorspace ... 4

1.2 Vehicles used in the traffic model .. 4

1.3 Script file compilation from *.scn to *.scb.. 4

1.2 Relations between scenarios .. 5

2 VARIABLE DEFINITIONS AND CONSTANTS ... 6

2.1 Numerical variables .. 6

2.2 String variables ... 7

2.3 User defined symbolic constants ... 7

2.4 System defined symbolic constants ... 8

3 GENERAL SETTINGS ... 9

4 INCLUDE SCRIPTFILES ... 10

5 COMMENT .. 10

6 SCENARIO DEFINITION ... 11

6.1 Scenario block ... 11

6.2 Start block ... 13

6.3 End block... 13

6.4 Do block ... 14

6.5 Define Action block ... 15

7 USERDEFINED FUNCTIONS .. 18

8 SYSTEM DEFINED FUNCTIONS .. 19

8.1 General overview .. 19

8.2 Creation of traffic participants ... 19

8.3 Traffic list functions .. 20

8.4 Datacontainer functions .. 21

Carnetsoft BV Description functionality scenario scripting language

3

8.5 UDP ethernet related functions .. 22

8.6 Overview of functions .. 23

9 SYSTEM DEFINED PROCEDURES .. 27

9.1 General overview .. 27

9.2 Overview of system defined procedures ... 28

10 STATEMENTS, CONDITIONS AND EXPRESSIONS 33

10.1 Statements ... 33

10.2 Condition ... 34

10.3 Expression ... 34

11 OBJECTS .. 35

11.1 General overview .. 35

11.2 Scen object, PartScen object ... 35

11.3 Action object.. 38

11.4 Inter object (intersection) .. 38

11.5 Segment object .. 39

11.6 Path object ... 40

11.7 Part object (participant) ... 42

12 SUGGESTIONS FOR DEBUGGING ... 51

Carnetsoft BV Description functionality scenario scripting language

4

1 General

1.1 Colorspace

All content is created using the sRGB colorspace. This assumed a Gamma value of around

2.2 on the monitors you are using. So, check if the Gamma on the monitor menu has been

set to 2.2. If you want the image generation to be a bit darker, you can set it to 2.6, but a

value of 2.2 is recommended.

1.2 Vehicles used in the traffic model

All vehicles are defined in the file \files\cars.def. There are a few different car lists. If you

prefer to use low poly vehicles then run \Carnetsoft\carsLP.bat. This copies \files\carsLP.def

to cars.def. If you prefer better looking higher poly vehicles then run \Carnetsoft\carsHP.bat

to install carsHP.def.

Cars.def defines a vehicle on each line. The first value is the Id as applied in CreatePart(id)

(see system defined functions section). The second value is vehicle type (for example 1 for

normal cars, 2 for buses, etc), the length, width and wheelbase (in meters), followed by the

length of a trailer (0 if no trailer is present), and finally the file path of the 3D model).

1.3 Script file compilation from *.scn to *.scb

Scenario scipting language is a structured way to specify driving simulator scenarios. It

consists of commands in an ASCII file (source file) that are read by traffic.exe. The scenario

scanner first performs a syntactical analysis of the specification in the source file. The

scenario parser makes a further analysis of the language elements. When no errors occur,

internal scenarios are constructed as binary trees that are handled in runtime by the scenario

interpreter. When there are syntactical errors, list of errors is printed on the screen, together

with a linenumber in which the error occurred, and the simulator program is aborted.

Internally, the scanner/parser mechanism constructs a temporary file that consists of a

conjunction of the included scriptfiles and the top-level script file. This temporary file has the

name ‘scentemp##001’. The line numbers in the errorlist refer then to the linenumbers in this

file.

The program c:\TextPad 4\TextPad.exe is used to make, change and compile scenario

script. All *.scn and *.sci files can be double clicked and then Textpad opens. Syntax

colouring and highlighting is used. To run the script, it must first be compiled into a binary

script *.scb. Only *.scn scripts can be compiled: all include scripts (*.sci) are simply included

in the binary files.

To compile the script:

- Menu Tools ->SslSyntaxCheck

- This runs the program SSLSyntaxCheck.exe (located in the TextPad 4 folder) with

the current scriptfile as input

- When an error is found, TextPad points at the line with the error and an error

message is provided.

- The error then needs to be fixed, file saved, and recomplie again

- When there are no more errors, this is messaged to the user and a file with the same

name and the *.scb extension is created.

- This file must be copied to the correct folder and can then be loaded and executed

by the simulator.

The script files have the extention *.scn. They may use include file (extention *.sci) with

functionality that’s reused. *.sci files are only compiled from an *.scn file (via the #Include

"*.sci" directive). You can't compile an *,sci file on its own. To read the script in the simulator,

it has to be compiled into a binary scriptfile with the *.scb extention.

Carnetsoft BV Description functionality scenario scripting language

5

A scenario is a predefined list of situations with a start- and an end condition. Scenarios are

used for the complete simulation process. It may for instance be used for initialization and

repositioning of all cars, for controlling traffic lights, for indicating when data must be stored,

for communication with the driver via spoken messages and for sending messages to other

devices. In our terminology, a scenario is a predefined script that specifies to the runtime

system what to do. A database is a separate entity in our terminology and is no part of a

scenario, although the scenario makes use of the database.

1.2 Relations between scenarios

Every scenario is unique in the sense that every scenario has a unique identification number.

There is no upper limit to the number of scenarios that can be specified. Every scenario must

have an unique number. This is an identification number that can be used by other scenarios

to refer to.

Scenarios are allowed to overlap, meaning that more than one scenario may be active at the

same time. The number of scenarios that may be active at the same time is unlimited, with

the restriction that if a particular scenario is active, it cannot be activated again until it is

terminated. So if a certain scenario is active it cannot be activated again during the time it is

active, but it may be activated again when it is finished. This means that all scenarios that

are active at the same time are different and unique. Local scenarios, that are assigned to

traffic participants, are a bit different, however. Each participant (autonomous agent) may

have the same scenario attached to it, but still all these instantiations are different because

they have their own local variables. The same scenario may be activated more than once in

the course of runtime.

So, there are two different types of scenarios, global scenarios and local scenarios. A global

scenario is the normal type: it is defined as

Define Scen[number] {

}

It starts when a certain condition evaluates to true and it stops when another condition

evaluates to true. A local scenario is always attached to one or more traffic participants. It is

Carnetsoft BV Description functionality scenario scripting language

6

defined as:

Define PartScen[number] {

}

Each local instantiation of a PartScen has its own local variables. Local scenarios are used to

control things for specific participants.

2 Variable definitions and constants

The user may define two kinds of variables: numbers or strings.

2.1 Numerical variables

These are defined as follows:

Var { ..;..;..; etc }

For example Var { variable1; variable2; etc }

The definition then starts with the keyword Var. This is followed by a set of {} brackets. Within

the brackets, each variable is followed by a ‘;’ sign.

There may be any number of these Var blocks defined. If a Var block is defined outside a

scenario definition, then it has 'global scope'.’That means that the variable is known

anywhere in the scenario definition file, after the point where it has been defined. For

example:

Var { MeasuredSpeed; } // from this moment on measured speed is known

K

K

Define Scen[100] {

 K

 K

 MeasuredSpeed := 0;

 TotalSpeed := 0; // this results in an error since TotalSpeed has not been defined yet

}

Var { TotalSpeed; Sdsl; }

If a variable has been defined within a scenario definition, then it has ‘local scope’: it is only

known within the present scenario. Normally variable names must be unique, but it is allowed

to have a variablename that has global scope and another variable with the same name that

has local scope. For example:

Var { MeasuredSpeed; }

Define Scen[100] {

 Var { MeasuredSpeed; }

 MeasuredSpeed := 0; // the variable with local scope is referred to

 K

}

Define Scen[101] {

 Var { a; b; }

 K.

 MeasureSpeed := 0; // the variable with global scope is referred to

}

Carnetsoft BV Description functionality scenario scripting language

7

A numerical variable must be initialized somewhere in the script with a number, or the result

of an expression, for example:

MeasuredSpeed := 0.5;

Or

MeasuredSpeed := (5*rpm())/TotalSpeed;

2.2 String variables

String variables are defined as:

String { ..;..;..; etc }

For example String { Str1; Str2 }

A String block has the same rules as a Var block (global scope or local scope). A string is a

series of characters that are enclosed by “” signs, for example :”This is a string”.

A string must be initialized somewhere in the script:

Str1 := “This is a string example”;

2.3 User defined symbolic constants

A user defined symbolic constant is defined as:

Assign SymbolicConstant numberconstant

For example:

Assign TestScenario 1000

After this, the value TestScenario can be used anywhere in the script, but it cannot be

changed by the user. For example:

Define Scen[TestScenario] {

 K

 K

}

Carnetsoft BV Description functionality scenario scripting language

8

2.4 System defined symbolic constants

In addition, some numbers are system defined symbolic constants. These are constants that

you can use, but are predefined within the system. You cannot change them and all are

reserved keywords. The following system defined symbolic constants are available:

Table 1. Overview of system defined symbolic constants

Keyword Value Application
MainTarget -2 As an objectreference to a participant, for example Part[MainTarget].Velocity

True 1 Boolean value in condition

False 0 Boolean value in condition

On 1 To assess a status

Off 0 To assess a status

Red -2 Status of traffic light

Yellow -3 Status of traffic light

Green -4 Status of traffic light

YellowRed -7 Status of traffic light

YellowFlash -5 Status of traffic light

Blank -6 Status of traffic light

Absent -1 To test whether an object is present

Normal -1 Type of intersection

Roundabout -2 Type of intersection

GiveRow -1 Right of way regime when coming form a specified path

RowOnLeft -2 See above

RowOnRight -3 See above

RowOnBoth -4 See above

EqualPriority -5 See above

HaveRow -6 See above

LeftLane -1 To position a participant on DLane 1, in Part[MainTarget].Lane := LeftLane;

RightLane -3 To position a participant on DLane 0, in Part[MainTarget].Lane := RightLane;

RightShoulder -4 To position a participant on the rightshouder of a highway in

Part[MainTarget].Lane := RightShoulder;

DLane 1 LaneType returned by Part[..].LaneType

HardShoulder 6 LaneType returned by Part[..].LaneType

ExitLaneRight 2 LaneType returned by Part[..].LaneType

EntryLaneRight 4 LaneType returned by Part[..].LaneType

ExitLaneLeft 3 LaneType returned by Part[..].LaneType

EntryLaneLeft 5 LaneType returned by Part[..].LaneType

Left -1 Direction

Right -2 Direction

Straight -3 Direction

Clear -4 Value to clear a route as in Part[..].Route := Clear;

StoreRoute -5 Value to start a route as in Part[..].StoreRoute;

IndicatorOff -1 Indicatorstatus, f.i. If (Part[].Indicator = IndicatorOff) {..}

IndicatorLeft -2 See above

IndicatorRight -3 See above

IndicatorAlarm -4 See above

ErrorTerminateScenario 10 Signal in Proc(SignalHandler, ErrorTerminateScenario); Terminate all

scenarios that have the TerminateOnError flag set to True

CommandTerminateSce

nario

11 Signal in Proc(SignalHandler, CommandTerminateScenario); Terminate all

scenarios that have the TerminateOnCommand flag set to True

OnDelete 20 Proc(SetHandlerParticipant, OnDelete, participantid, userdefined

functionname): if the participant is deleted then apply functionname. OnDelete

is detected in the system

OnRouteError 21 Proc(SetHandlerParticipant, OnRouteError, participantid, userdefined

functionname): if the participant commits a route error then apply

functionname. OnRouteError is detected in the system

OnCollision 22 Proc(SetHandlerParticipant, OnCollision, participantid, userdefined

functionname): if the participant collides with another participant then apply

functionname. OnRouteError is detected in the system

OnRoad 1 Returnvalue of Part[..].GetPositionOnRoad. OnRoad indicates that the

participant is on the road

OffRoadRight 2 Returnvalue of Part[..].GetPositionOnRoad. OffRoadRight indicates that the

participant drives to the right of the road

Carnetsoft BV Description functionality scenario scripting language

9

OffRoadLeft 3 Returnvalue of Part[..].GetPositionOnRoad. OffRoadLeft indicates that the

participant drives to the left of the road

3 General settings

There is a limited number of special keywords that refer to general settings that apply to the

whole script. These settings are specified as:

Set <Keyword> <value>

The following keywords are available:

- RoadNet : this specifies the name of the road databases without the extention. If this

keyword is read by the scenario parser, both the logical roadnet database with the

extention .net is read and the graphical database names are send to the renderers for

loading.

- All *.net files (the logical databases) MUST be in the \SimCarnet\scenegraphs\ folder.

- All *.bam files (the graphical database + *.ref file optionally) must be in de \models\

folder. The *.bam files refer to other objects that must be stored in the folders under

\models\.

- Version : this specifies the version identification string that is displayed in some types of

userinterfaces (if there’s a version control system installed).

- NoShadows: shadow generation is switched off for this database in this script.

Example:

Set RoadNet "intersNL"

There must be 1 and only 1 Set RoadNet “..” statement in the scenarioscript. The use of Set

Version is optional. The Set statements are best used at the top of the top-level

scenarioscript file.

For example:

Set RoadNet "intersNL" // use the ‘bibeko’ road database, both the logical and the graphical databases

Set Version "v1.1.0 - 1-03-2012"

Var { Stopped;

 StartRun;

 ResetByCommanded;

 SuperFase;

 StartScen10;

 Scen10Done;

 VeelVerkeer;

}

// user defined functions

K

K

// list of scenarios

...

K

Carnetsoft BV Description functionality scenario scripting language

10

4 Include scriptfiles

Existing functionality in scripts can be re-used by including these scripts in a top-level

scriptfile. It goes like this:

Include “scriptfilename”

This line must not be closed by a ‘;’ sign. Include statements can be used within a top-level

scriptfile and also within include files. After the ‘include’ statement, all userdefined functions

and global variables as specified in the include file, can be used in the other script files after

the inclusion of the respective include file. Because of this, it is strongly recommended to

specify the include statements somewhere at the top of the top-level scriptfile.

For example:

Set RoadNet "intersNL"

Set Version "v1.1.0 - 1-03-2012"

Var { Stopped;

 StartRun;

 ResetByCommanded;

 SuperFase;

 StartScen10;

 Scen10Done;

 VeelVerkeer;

}

/**

 Separate procedures

**/

#Include "GenTraffic.sci"

#Include "DA_DrivingTasks.sci" // assess driving behaviour

/***/

5 Comment

User comment is specified in either of the following two ways:

- // : all text on the line after the double backward slash is ignored

- /* K. */ : all text between / * and */ is ignored.

If you want to add comment (to improve readability of the script) after some scriptcode on the

same line you use the // comment. For example :

#Include "DA_DrivingTasks.sci" // assess driving behaviour

If you want to write your comment over more that one line the /*K*/ mechanism can be used.

For example :

/**

 Separate procedures

**/

Carnetsoft BV Description functionality scenario scripting language

11

6 Scenario definition

Scenarios are defined within a block as:

6.1 Scenario block

The ‘normal’ scenario is a global scenario that is defined as:

Define Scen[scenario identificationnumber] {

}

A local scenario is attached to a traffic participant and it is defined as:

Define PartScen[scenario identificationnumber] {

}

Both types have the same rules and syntax, so they are treated simply as ‘scenarios’. The

only difference is that a PartScen is always attached to a Participant, for example:

Define PartScen[21] {

 Start {

 When (K);

 Part[].MaxVelocity := 50/3.6; // this participant is the participant that uses this scenario

 K.

 }

}

and later in the script when a Participant is defined:

PNr := CreatePart(3);

If (PNr > 0) {

 K.

 Proc(AddScenario, PNr, 21); // here scenario 21 is attached to the participant

}

So, in this mechanism, the participant uses this PartScen scenario number 21 and it

accesses it’s own data by the Part[] object. This is a participant with the default instantiation,

indicated by []. And in this case, the default Participant is the participant who uses this

scenario. Each PartScen can be attached to any number of participants.

Define and Scen and PartScen are keywords. Scen is followed by a set of brackets [] that

contain the identification number. An identificationnumber is required, and the user must

make sure that the number is unique. If scenario numbers are not unique, the scenario parser

generates an error and the program is aborted. Scenario identificationnumbers must be

positive numbers (from 0..n). There are no restrictions on the ordering of scenario

identificationnumbers. So, the following is allowed:

Define Scen[0] {

}

Define Scen[10] {

}

Define Scen[8] {

}

Carnetsoft BV Description functionality scenario scripting language

12

The scenario identificationnumber may be any of the following:

- a number

- a userdefined symbolic constant. For example:

 Assign SCENARIOTERMINATEPARSER 9999

 K.

 Define Scen[SCENARIOTERMINATEPARSER] {

 }

In this example the symbol constant SCENARIOTERMINATEPARSER has been assigned

the value 9999. This is used later on to define a scenario with the scenario

identificationnumber 9999.

When the program Traffic is aborted, then the scenario 9999 is activated one more time. So

Scen[9999] can be used to close things when the program stops, like closing the data for

storage etc.

Another special scenario number is 999. When this is activated it is send to the StControl

interface to indicated that the current simulation is finished. This activates the <Stop

simulation> button on the StControl interface.

A scenario identificationnumber must not be a function or an expression. So the following are

examples of illegal scenario specifications:

 Define Scen[rpm()] {

 }

 Define Scen[2*TestNum-3] {

 }

Scenario definitions may contain the following blocks:

Var {K} a list of numerical local variables

String {K.} a list of string local variables

Start {K} a specification of a ‘Start’ condition

End {K} a specification of an ‘End’ condition

Do {K} a specification of a lst of statements that have to be executed each cycle

Define Action {K} a sub-scenario

None of these is required, but when these blocks are used, the following rules must be

followed:

1) Always specify a Var or/and a String block in the top of the Scen block

2) After this specify the Start block. The Start block specifies when the scenario will be

activated. If the Start block is ommitted, then the scenario will start immediately

3) If you use a Do block, it must be specified between the Start and End block.

4) Define Action specifies a sub-scenario. There may be any number of Actions defined

within a scenario specification. If you use actions, they must be specified after the End

block.

The Var and String blocks have been discussed earlier.

Carnetsoft BV Description functionality scenario scripting language

13

6.2 Start block

A Start block always has the following structure:

Start {

 When (condition);

 <list of statements>

}

The scenario starts to be active if the condition in When (condition); evaluates to True (=1).

From that moment on the scenario is active until the End condition (the condition in the End

block) becomes true. As soon as the Start condition becomes True, the list of assignments in

the Start block is evaluated. This is done only once.

For example:

Define Scen[100] {

 Var { Counter; ThisTime; }

 Start {

 When (Part[MainTarget].PathNr = 50 and Part[MainTarget].DisToInter < 40.5);

 Counter := 0;

 ThisTime := runtime();

 K

 }

}

The scenario starts as soon as the simulator car (Part[MainTarget]) is somewhere in the

world on path 50 (a certain road) and less than 40.5 meters from the next intersection. If that

conditions has become true, the local variable Counter is set to 0, and the local variable

ThisTime is assigned the current time (the system function runtime()).

6.3 End block

An End block always has the following structure:

End {

 When (condition);

 <list of statements>

}

The scenario ceases to be active if the condition in When (condition); evaluates to True (=1).

Then, all statements in the End block are evaluated once, and all actions (defined in the list if

actions that go with te scenario) are terminated. For example:

Define Scen[100] {

 Var { Counter; ThisTime; }

 Start {

 When (Part[MainTarget].PathNr = 50 and Part[MainTarget].DisToInter < 40.5);

 Counter := 0;

 ThisTime := runtime();

 K

 }

 End {

 When (Part[MainTarget].PathNr = 60 and Part[MainTarget].DisFromInter > 25);

 ThisTime := runtime() – ThisTime;

 Proc(Print, “Scenario 100 has been terminated. Duration of this scenario: ”);

 Proc(Print, num2str(ThisTime, 5, 2));

 }

}

In this example the scenario starts when the driver has reached path 50 and is less that 40.5

meters to the next intersection. The scenario stays active until the driver reaches path 60 and

Carnetsoft BV Description functionality scenario scripting language

14

is more that 25 meters from the last intersection. From that point on, the scenario is stopped,

and a string with the text “Scenario 100 has been terminated” is written to the console screen.

Also the total duration of the scenario is computed and written to the console screen.

Proc is a system defined procedure. In this case the procedure ‘Print’ is used, and this has 1

parameter (a string).

6.4 Do block

A Do block always has the following structure:

Do {

 <list of statements>

}

For example:

Define Scen[100] {

 Var { Counter; ThisTime; AvgSpeed; }

 Start {

 When (Part[MainTarget].PathNr = 50 and Part[MainTarget].DisToInter < 40.5);

 Counter := 0;

 AvgSpeed := 0;

 K

 }

 Do {

 Counter := Counter+1;

 AvgSpeed := AvgSpeed + Part[MainTarget].Velocity;

 }

 End {

 When (Part[MainTarget].PathNr = 60 and Part[MainTarget].DisFromInter > 25);

 AvgSpeed := AvgSpeed/Counter;

 Proc(Print, “Average vehicle speed in Scenario 100 : ”);

 Proc(Print, num2str(3.6*AvgSpeed, 5, 2));

 }

}

The Do block in this example contains two statements that are executed during each

simulation cycle as long as the scenario is active. After termination of the scenario, the

average speed is computed and printed on the console screen. Because vehicle speed

(Part[MainTarget].Velocity) is measured in m/s, the result is multiplied by 3.6 to obtain the

speed in km/h.

All statements in the Do block are repeated each simulation cycle. If the framerate of

StTraffic is high, computations such as these may lead to overflow of variables since they

may become very high. Also, Do blocks are computationally more expensive than Start or

End blocks. Often the same functionality can be obtained by Actions, for example:
Define Action {

 Start {

 Counter := Counter+1;

 AvgSpeed := AvgSpeed + Part[MainTarget].Velocity;

 }

 End {

 When (Action[].Duration >= 0.1);

 }

}

In this action AvgSpeed is processed 10 times per seconds which is quite enough in practice.

Carnetsoft BV Description functionality scenario scripting language

15

6.5 Define Action block

An Action is a sub-scenario: it also has a Start condition, and End condition and possibly a

Do block. Actions are used to do special tasks within a scenario. An Action block has the

following structure:

Define Action[Action identification number] {

 Start {

 When (condition);

 <list of statements>

 }

 Do {

 <list of statements>

 }

 End {

 When (condition);

 <list of statements>

 }

}

The action identification number must be [0..n], and it must be unique within the present

scenario specification. If the Start block is ommited, the action starts immediately. Otherwise

the action starts when the Start condition (defined in When (condition)) evaluates to True. If

the End condition is ommited, the action terminates immediately. Otherwise it terminates

when the End condition evaluates to True. If a Do block is defined, all statements within the

Do block are executed each simulationcycle as long as the Action is active.

The following example illustrates the use of Actions. If you need to do a number of things as

a procedure in a fixed order, Actions come in handy:

Define Scen[LOOK_STRAIGHTON] {

 Var { a; State; MyTTI; StopScenario; WaitUntilMessageFinished;

 RightCarId; LastRightCarId; NrAfterControl; }

 Start {

 When (LookStraightOn = True);

 State := 0;

 WaitUntilMessageFinished := False;

 StopScenario := False;

 MyTTI := 9999;

 LastRightCarId := 9999;

 NrAfterControl := 0;

 }

 Do {

 MyTTI := TTI();

 RightCarId := Part[MainTarget].RightCar;

 }

 End {

 When (StopScenario = True or LookStraightOn = False);

 LookStraightOn := False;

 }

 Define Action[0] {

 Start {

 When (State = 0 and MyTTI < 10); // start this action is time to intersection < 10 seconds

 a := SendMessage(30010, SEND_ALWAYS, 0); // send a voice message to driver

 }

 End {

 When (Action[].Duration > 1.0); // action terminates after 1 second

 State := 1;

 }

 }

 Define Action[1] {

 Start {

Carnetsoft BV Description functionality scenario scripting language

16

 When (State = 1);

 a := SendMessage(30020, SEND_ALWAYS, 0); // Send a message to the driver

 }

 End {

 When (Action[].Duration > 1.0);

 State := 2;

 }

 }

 Define Action[2] {

 Start {

 When (State = 2);

 a := SendMessage(30031, SEND_ALWAYS, 0); // Send a message to the driver

 NrAfterControl := NrAfterControl + 1;

 }

 End {

 When (Action[].Duration > 1.0);

 State := 3;

 }

 }

 Define Action[3] {

 Start {

 When (State = 3);

 a := SendMessage(30020, SEND_ALWAYS, 0);

 }

 End {

 When (Action[].Duration > 1.0);

 State := 4;

 }

 }

 Define Action[4] {

 Start {

 When (State = 4);

 a := SendMessage(30041, SEND_ALWAYS, 0);

 }

 End {

 When (Action[].Duration > 1.0);

 State := 5;

 }

 }

 Define Action[5] {

 Start {

 When (Part[MainTarget].DisToInter < 40 and State = 5 and Part[MainTarget].Velocity < 5.55 and

 NrAfterControl <= 2);

 State := 2;

 }

 End {

 When (State = 2 or (Part[MainTarget].DisFromInter > 10 and Part[MainTarget].DisFromInter < 20));

 // jump back to Action 2

 }

 }

 // After passing the intersection

 Define Action[6] {

 Start {

 When (State = 5 and Part[MainTarget].DisFromInter > 10 and

 Part[MainTarget].DisFromInter < 20);

 a := SendMessage(30010, SEND_ALWAYS, 0);

 }

 End {

 When (Action[].Duration > 1.0);

 State := 6;

 }

 }

 Define Action[7] {

Carnetsoft BV Description functionality scenario scripting language

17

 Start {

 When (State = 6);

 a := SendMessage(30030, SEND_ALWAYS, 0);

 }

 End {

 When (Action[].Duration > 1.0);

 WaitUntilMessageFinished := True;

 State := 7;

 }

 }

 Define Action[8] {

 Start {

 When (State = 8);

 }

 End {

 When (Action[].Duration > 4.0);

 StopScenario := True;

 }

 }

 Define Action[9] {

 Var { b; StopAction; MessDuration; }

 Start {

 When (WaitUntilMessageFinished = True);

 WaitUntilMessageFinished := False;

 If (LastMessage > 0) {

 MessDuration := MessageDuration(LastMessage);

 StopAction := False;

 }

 Else {

 StopAction := True;

 }

 }

 Do {

 If (LastMessage > 0) {

 b := MessageSendTime(LastMessage);

 If (b > 0 and (runtime() - b) > MessDuration) {

 StopAction := True;

 }

 }

 }

 End {

 When (StopAction = True or Action[].Duration > 15);

 State := 8;

 }

 }

}

Carnetsoft BV Description functionality scenario scripting language

18

7 Userdefined Functions

There are a wide range of system functions that have a returnvalue and 0..n parameters. In

addition, users may define their own functions. These are Userdefined functions. They

always have the following structure:

Define Function FuncName(operantlist) {

 < List of statements>

 FuncName := expression; (not required)

}

operantlist : operant1, operant2 ..

The user is then free to define a variable number of operants (0..n). These operants are

expressions and they may then be variables, constants, other functions (system- or

userdefined) and other expressions (for example a/(b+c)). The statement ‘FuncName :=

expression’ conforms to the pascal convention. The user is not required to use this

statement. It the statement is not included in the function, the return value of the function is

zero (0). If the statement is a member of the function then it may be typed anywhere in the

function or it may be used several times. The returnvalue of the function is the result that has

been assigned to FuncName. Userdefined functions cannot be defined within a scenario and

they must be defined only once. Calls to a userdefined function can only be R-values: on the

right side of an assignment for example.

In the following example a function is defined that returns 1 or 0 depending on whether a

specified amount of time (time_elapsed) is exceeded. It is used in an example that clocks

certain events.

Define Function StopWatch(time_elapsed, LastTime) {

 Var { temp; }

 temp := runtime();

 If ((temp - LastTime) >= time_elapsed) {

 StopWatch := 1;

 }

 Else { StopWatch := 0; }

}

Define Scen[20] {

 Var { a; OnTimer; BetweenTime; }

 Start {

 When (StartScen10 = True and

 Part[MainTarget].PathNr = 380 and

 Part[MainTarget].Velocity > 2.77);

 OnTimer := 0;

 BetweenTime := 2;

 K

 }

 Do {

 // do something on a timed basis

 a := StopWatch(BetweenTime, OnTimer);

 If (a = 1) {

 OnTimer := runtime();

 BetweenTime := 3.0+rnd(3.0);

 K

 }

 K

 }

 End {

 K

 }

}

Carnetsoft BV Description functionality scenario scripting language

19

In this example the function StopWatch is a userdefined function. The function runtime() is a

system function. If no returnvalue is defined for a userdefined function, you can use it as a

procedure to do certain things, for example reset some global variables:

Define Function ResetOnRightLane() {

 If (OvertakingPhase > 0) { OvertakingPhase := -1; }

 ThisLaneType := DLANE;

 ThisLaneIndex := 0;

 PrevLaneType := DLANE;

 PrevLaneIndex := 0;

}

But even in this case you still need to consider such a function as a R-value, as in

a := ResetRightLane();

8 System defined functions

8.1 General overview

A whole set of system defined functions is available to be used in the scripts. System defined

functions have a return value and have the following structure:

FunctionName(<list of parameters>);

All system functions are reserved keywords. Most functions return a number and a few return

a string. System functions can be used in any expression, for example:

Var { TempVar; }

TempVar := sqrt(sqr(a) + sqr(b));

In this example, sqrt and sqr are systemfunctions.

A number of classes of functions warrant some special attention since they are part of a

framework for problemsolving.

8.2 Creation of traffic participants

All traffic in the traffic system is created on-the-fly with the system defined functions

CreatePart. The following example shows how you can create a specific type of car:

Define Scen[32] {

 Var { a; b; PNr; OnTimer; BetweenTime; CarCount; }

 Start {

 When (StartScen11 = True and Part[MainTarget].PathNr = 388);

 OnTimer := 0;

 BetweenTime := 2;

 CarCount := 0;

 }

 Do {

 a := StopWatch(BetweenTime, OnTimer);

 If (a = 1 and CarCount <= 10) {

 OnTimer := runtime();

 BetweenTime := 3+rnd(3);

 b := 1+rnd(5);

 PNr := CreatePart(b); // create a car of type b

 If (PNr > 0) { // if the creation has been succesfull, the value is > 0

 CarCount := CarCount+1;

 // now adjust the properties of the car that has been created

 Part[PNr].RemoveOnDistance := 300;

 Part[PNr].MaxVelocity := 50/3.6;

Carnetsoft BV Description functionality scenario scripting language

20

 Part[PNr].Velocity := 50/3.6;

 Part[PNr].PathNr := 368;

 Part[PNr].DisToInter := Path[368].Length - 50;

 Part[PNr].Lane := RightLane;

 Part[PNr].RuleOvertaking := Off;

 b := 1+rnd(10);

 Part[PNr].Rt := 0.7+(0.1*b);

 Part[PNr].Route := Clear;

 Part[PNr].Route := 416;

 Part[PNr].Route := 410;

 Part[PNr].Route := StoreRoute;

 }

 }

 }

 End {

 When (Part[MainTarget].PathNr = 369 or StartScen11 = False);

 }

}

In this example, a series of cars is created (no more than 10) during the lifetime of the

scenario. The lifetime of the participants (cars) is controlled by the variable

Part[PNr].RemoveOnDistance. This variable is used by the system to determine at what

absolute distance from the simulator car the participant is deleted. If you specify

Part[PNr].RemoveOnDistance := 100; then the participant is removed when it is more than

100 meters away from the simulator car.

8.3 Traffic list functions

Because traffic is created by several different scenarios, the control of the lifetime of traffic

can be a bit difficult at times. In order to assist in lifetime control a number of traffic list

functions can be used. Traffic can be put in different traffic lists and these lists can be

deleted all at once. This gives the user the opportunity to let each scenario create and handle

its own traffic. In the following example traffic is created and stored in a traffic list. At the end

of the scenario all traffic that was created by the scenario is deleted.

Define Scen[32] {

 Var { a; b; PNr; OnTimer; BetweenTime; CarCount; }

 Start {

 When (StartScen11 = True and Part[MainTarget].PathNr = 388);

 OnTimer := 0;

 BetweenTime := 2;

 CarCount := 0;

 Scen[].TerminateOnError := True;

 DeleteListNr := 2;

 }

 Do {

 a := StopWatch(BetweenTime, OnTimer);

 If (a = 1 and CarCount <= 10) {

 OnTimer := runtime();

 BetweenTime := 3+rnd(3);

 b := 1+rnd(5);

 PNr := CreatePart(b); // create a car of type b

 If (PNr > 0) { // if the creation has been succesfull, the value is > 0

 CarCount := CarCount+1;

 // now adjust the properties of the car that has been created

 Part[PNr].RemoveOnDistance := 1700;

 Part[PNr].MaxVelocity := 50/3.6;

 Part[PNr].Velocity := 50/3.6;

 Part[PNr].PathNr := 368;

 Part[PNr].DisToInter := Path[368].Length - 50;

 Part[PNr].Lane := RightLane;

 Part[PNr].RuleOvertaking := Off;

 b := 1+rnd(10);

 Part[PNr].Rt := 0.7+(0.1*b);

 Part[PNr].Route := Clear;

 Part[PNr].Route := 416;

 Part[PNr].Route := 410;

Carnetsoft BV Description functionality scenario scripting language

21

 Part[PNr].Route := StoreRoute;

 b := addtolist(DeleteListNr, PNr);

 }

 }

 }

 End {

 When (Part[MainTarget].PathNr = 369 or StartScen11 = False);

 a := deletelist(DeleteListNr); // and kill all cars

 }

}

In this example, a series of cars is created (no more than 10) during the lifetime of the

scenario. These cars are added to a traffic list. If the list DeleteListNr (=2) has not yet been

created by this system while you use addtolist(DeleteListNr, PNr), the such a traffic list will be

created by the system. At the end of the scenario all cars in the traffic list are deleted, and

the traffic list itself is removed. This method may have the disadvantage that cars are

deleted while they are still visible to the simulatordriver: in that case the cars suddenly

disappear.

8.4 Datacontainer functions

Datacontainer functions help the user in on-line dataprocessing. Any kind of variable can be

added to a container and data can be processed on-line. In the following example, data is

sampled each second and stored in containers. These are processed afterwards.

In the following example, vehicle speed and lateral position are sampled each second during

the lifetime of the scenario, and these data are stored in datacontainers. On completion of

the scenario, the average values are computed.

Var { SpeedValues, LateralValues; }

Define Function SampleData(SPEED, LAT) {

 Var { a; }

 a := AddToData(SpeedValues, SPEED);

 a := AddToData(LateralValues, LAT);

}

Define Scen[5000] {

 Var { a; b; AvgSpeed; AvgLatpos; OnTimer; BetweenTime; }

 Start {

 K

 OnTimer := 0;

 BetweenTime := 1.0;

Speedvalues := 1;

LateralValues := 2;

 }

 Do {

 a := StopWatch(BetweenTime, OnTimer);

 If (a = 1) {

 OnTimer := runtime();

 b := SampleData(Part[MainTarget].Velocity, Part[MainTarget].LatPos);

 }

 }

 End {

 K

 AvgSpeed := MeanData(SpeedValues);

 AvgLatpos := MeanData(LateralValues);

 a := DeleteData(SpeedValues);

 a := DeleteData(LateralValues);

 }

}

Carnetsoft BV Description functionality scenario scripting language

22

8.5 UDP ethernet related functions

This category of functions enables the user to send all kinds of data to other computers via

UDP or receive any kind of data from other computers. There can be any number of UDP

connections opened to other computers. With these functions the user is able to log data on

external computers, control external devices, visualize data on external systems etc. Also,

the user is able to control simulator functions via script by another computer.

UDP connections to other computers are created by :

a := OpenUdp(ListId, “ethernetaddress”, port);

for example a := OpenUdp(1, “192.168.0.10”, 2001);

From then on, the UDP connection is referenced by the ListId, as in:

a := CloseUdp(1);

Data can be read of written to this Udp port:

a := ReadUdp(1) ;

a := WriteUdp(1);

There are internal read and write buffers of 1024 bytes long that are reserved and controlled

by the system. Suppose that you want to send a byte containing a symbol and a short integer

containing some value, this can be accomplished by:

Var { Symb; OutValue; Counter; }

a := ClearUdpOut(1); // clear the output buffer of udp list id 1

Symb := 10; OutValue := 5;

Counter := 0;

a := UdpOutAddByte(1, Counter, Symb);

Counter := Counter + 1;

a := UdpOutAddShort(1, Counter, OutValue);

a := WriteUdp(1);

The following types of data can be added to a databuffer:

- byte (unsigned char)

- short (short integer, 2 bytes)

- long (long integer, 4 bytes)

- float (floating point number, 4 bytes)

- string (character string, any number of bytes)

Suppose that you want to receive a byte and a short from another computer. This can be

accomplished as follows:

Var { Symb; InValue; Counter; }

Counter := 0;

a := ReadUdp(1);

If (a > 0) {

 Symb := UdpInGetByte(1, Counter);

 Counter := Counter + 1;

 InValue := UdpInGetShort(1, Counter);

}

Carnetsoft BV Description functionality scenario scripting language

23

8.6 Overview of functions

The following Table gives an overview of all systemfunctions that have a number as

returnvalue.

Table 2. Overview of system defined functions that return a number

Functionname Meaning Input parameters

 MATHEMATICAL FUNCTIONS

cos cosine 1: angle in radians

sin sine 1: angle in radians

tan tangens 1: angle in radians

log natural logarithm 1: number

log10 base 10 logarithm 1: number

sqrt square root 1: number

floor largest integer not greater than input number :

rounding down

1: number

ceil smallest integer not less than input number:

rounding up

1: number

abs absolute value 1: number

acos arc cosine 1: number >= -1.0 and <= 1.0

asin arc sine 1: number >= -1.0 and <= 1.0

atan arc tangent 1: number

sqr square 1: number

rnd random number between 0..input number-1 1: number > 0: rnd(10) gives a random

number from 0..9

min smallest of 2 numbers 2: number, number

max largest of 2 numbers 2: number, number

SpeedToObject gives the speed (m/s) such that the input

requirements are true

5: current speed, required speed, distance

to object, maximum deceleration, headway

(in seconds)

lat2ref Lateral distance with respect to reference track (>0 =

left of track, < 0 = right of track)

0

 SIMULATOR CAR RELATED FUNCTIONS

gear gear position (0=free gear, 1..5) 0

gearEffective Gear position or used (internal) gear in

AUTOMATIC gear mode

0

gearmode 1=5-speed gear; 2 = automatic gear 0

contact ignition/key position (0=off, 1=on, 2=starter engine) 0

indicator indicatorposition (IndicatorOff, IndicatorLeft,

IndicatorRight, IndicatorAlarm)

0

gas Gaspedal position (0..100) percentage 0

brake Brakepedal position (0..100) percentage 0

brakeforce Brakeforce in Nm 0

wiper Wiper state (0 = Off, 1 = On) 0

handbrake Handbrake position (0..100) percentage 0

clutchraw raw clutch position (0..100) 0

clutch Clutchposition (0..100) percentage 0

steer Steering wheelangle in radians 0

headlight headlights (0=off, 1=on, 2= big light) 0

flashlight Big lights (0=off, 1=on) 0

warnlight Lights priority vehicle (0=off, 1=on) 0

pdtbutton Pdt button (for detection response task) pressed

(0=off, 1 = pressed)

0

button1 Button1 pressed (0=off, 1 = pressed) 0

button2 Button2 pressed (0=off, 1 = pressed) 0

seatbelt Seatbelt ((0=off, 1=on) 0

accel Longitudinal acceleration in m/s
2
 0

lataccel Lateral acceleration in m/s
2
 0

latvelocity Lateral velocity in m/s 0

rpm engine rpm (rotations per minute) 0

IsLead true if participant is in front of me else false 1: participant id

IsRear true if participant is behind me else false 1: participant id

Carnetsoft BV Description functionality scenario scripting language

24

GetCollisionCar vehicle that has been involved in collision with

simulator car

0

GetCollisionActor Actor that has been involved in collision with

simulator car

0

GetNextDir direction (Left, Right, Straight) after next intersection

ranknr

1: 1..5; intersectionranknumber: 1=next

intersection, 2 = intersection after that etc.

fuelflow current fuel consumption in liters/minute 0

fuelused number of liters fuel used since last ClearFuelCount 0

enginepower current engine power in Kw 0

horn claxon pressed (0=off, 1 = on) 0

siren siren on (0=off, 1 = on) 0

tlc geometrically accurate tlc of MainTarget (- = toright,

+ = to left)

0

tlc_1 approximation of tlc (lateral distance/lateral velocity)

(- = toright, + = to left)

0

LowestLatposAnyW

heel

Lowest lateral position of any of the four wheels with

respect to centerline of right lane

0

HighestLatposAnyW

heel

Highest lateral position of any of the four wheels with

respect to centerline of right lane

0

MB_Pitch Pitch angle for motion platform control 0

MB_Yaw Yaw angle for motion platform control 0

MB_Roll Roll angle for motion platform control 0

MB_LongAcc Longitudinal acceleration in m/s (y-axis) 0

MB_LatAcc Lateral acceleration in m/s (x-axis) 0

MB_VertAcc Vertical acceleration in m/s (z-axis) 0

MB_YawRate Rotational Speed yaw in rad/s (x-axis) 0

MB_RollRate Rotational Speed roll in rad/s (y-axis) 0

MB_PitchRate Rotational Speed pitch in rad/s (x-axis) 0

 ANY PARTICIPANT RELATED FUNCTIONS

RouteOfCar gives a pathnumber for a participant and a routeindex 2: participant id, route index (zero based)

dhw distance headway (bumper to bumper along the

path) between a participant and another lead

participant (in meters)

2: participant id, lead participant id

DisBetween absolute distance between coordinate positions of

two participants (in meters)

2: participant id, participant id

 SYSTEM STATE RELATED

runtime time in seconds sinds start of program 0

timestamp Current UTC timestamp in ms, gives absolute

timestamp with respect to start of universal epoch,

same on all computers

0

nrcars current number of active cars in traffic 0

GetProgramPause gives true if the Traffic program is in pause mode,

else false

0

 SPEECH MESSAGE RELATED

MessageSendTime time when message was send to userinterface for

playing

1: id number of speech message

MessageDuration time length of speech message 1: id number of speech message

IsMessagePlaying true if message is still playing, else false 1: id number of speech message

 DRIVING LANE RELATED

GetLaneId unique lane id 3: segmentnr, lanetype, laneindex

LaneTypeLeft the lane type (DLane, ExitLaneRight etc) of the lane

to the left of input lane id

1: lane id

LaneTypeRight the lane type (DLane, ExitLaneRight etc) of the lane

to the right of input lane id

1: lane id

LaneWidth Lane width in m. 3: segmentid, lanetype, laneindex

GetTrafLightStatus Gets the traffic light status (Red, Yellow, Green etc)

for a specific lane id. If there’s no lane-specific traffic

light then it checks it the path the lane is in has a

traffic light attaced to it, amd it returns the status

1: lane id

GetTrafLightStatus(laneid) can be used

for both path-connected and lane

connected traffic lights. First find the

laneid and then apply the function:

Id := GetLaneId(Part[].SegmentNr,

DLane, 0);

Carnetsoft BV Description functionality scenario scripting language

25

Stat := GetTrafLightStatus(Id);

 CREATION OF TRAFFIC PARTICIPANTS

CreatePart returns a participant id for a new car of certain type 1: cartype depending ID in \files\cars.def

For example PNr := CreatePart(10)

creates a participant of type 10 as defined

in cars.def

NrCarTypes returns the number of cartypes defined in the

cartypes.conf file

CreateActor Returns the id of an animated object, as in

Act1 := CreateActor("miabusiness_walking", 490,

180, 0.1, 270);

5: name of model (string), x, y, height,

heading for initial position (in degrees)

CreateActorPath Returns the id of an animated object, as in

Act1 := CreateActorPath("miabusiness_walking", 2,

100, -3.0, 90);

5: name of model (string), pathid,

distointer, latpos (lateral distance from

center of right lane), heading increment

(with respect to heading of segment

position in degrees)

 ACTOR FUNCTIONS

GetActorX Returns the current X coordinate of the actor 1: actor id

GetActorY Returns the current Y coordinate of the actor 1: actor id

GetActorZ Returns the current Z coordinate of the actor 1: actor id

GetActorH Returns the current heading angle of the actor 1: actor id

 TRAFFIC LIST FUNCTIONS

addtolist adds a participant id to a traffic list. If the list does

not exist, a new one is created

2: trafficlist id, participant id, for example,

a := addtolist(2, PNr); participant PNr is

added to traffic list 2

removefromlist removes a participant from a list and also from the

traffic system as a whole

2: trafficlist id, participant id, for example,

a := removefromlist(2, PNr); participant

PNr is removed from traffic list 2 and from

the traffic system

isempty True if trafficlist is empty else False 1: trafficlist id

ismemberof True if participant id is member of this list, else False 2: trafficlist id, participant id

getfirst returns the first participant id in the traffic list 1: trafficlist id

getnext returns the next participant id in the traffic list 1: trafficlist id

getlast returns the last participant id in the traffic list 1: trafficlist id

getprev returns the previous participant id in the traffic list 1: trafficlist id

deletelist deletes the complete list and all traffic that is

included in the list

1: trafficlist id

numberlist returns the number of participants in the list 1: trafficlist id

 DATACONTAINER RELATED FUNCTIONS

AddToData Adds a number to a datacontainer. If the

datacontainer does not exist, a new one is created

2: Datacontainer id, number

DeleteData Delete a datacontainer 1: Datacontainer id

MeanData Gives the mean (average) value of all data in the

container

1: Datacontainer id

MinimumData Gives the smallest value of all data in the container 1: Datacontainer id

MaximumData Gives the largest value of all data in the container 1: Datacontainer id

SumData Gives the sum of all data in the container 1: Datacontainer id

SdData Gives the standarddeviation of all data in the

container

1: Datacontainer id

NumberData Gives the number of dataelements (values) in the

container

1: Datacontainer id

DataElement Gives the value of the indexed data element in the

container

2: Datacontainer id, index (zero based), f.i.

a := DataElement(1, 4); // return the 5
th

(4+1) element of container 1

SortData Sort the values in the container from low to high 1: Datacontainer id

 A StringTable is a special type of DataContainer

that contains strings instead of numbers

AddToStringTable Add a string to a string table (this is a table of strings

that can be found by index). If the StringTable does

not exist, a new one is created.

2: StringTable id, string

DeleteStringTable Delete a StringTable 1: StringTable id

NumberStringTable Gives the number of strings in the StringTable 1: StringTable id

StringTableElement Gives the value of the indexed string in the

StringTable

2: Datacontainer id, index (zero based),

Carnetsoft BV Description functionality scenario scripting language

26

 TYPE CONVERSION

str2num converts a string into a number 1: string

 FILE ACCESS
ReadString Reads a string from a named file 1: string (filename). Returns a string, or an

empty string if end-of-file has been

reached

ReadQuotedString Reads a string between quotes (“K.”) from a named

file

1: string (filename). Returns a string, or an

empty string if end-of-file has been

reached

ReadNumber Reads a number from a named file 1: string (filename). Returns a number, or

-1 if end-of-file has been reached or if not

a number

 UDP ETHERNET RELATED FUNCTIONS
OpenUdp Opens a UDP socket. 0 is failed, else 1. 3: udp list id, ethernetadress string, portid

CloseUdp Close the UDP connection. 0 is failed, else 1. 1: udp list id

WriteUdp Write the writebuffer (1024 bytes long at maximum).

0 is failed, else 1.

1: udp list id

ReadUdp Read the readbuffer (1024 bytes long at maximum).

Returns the number of bytes read

1: udp list id

ClearUdpOut Clears the output buffer 1: udp list id

UdpOutAddByte Add a byte (unsigned char) of 1 byte on position

bufferindex

3: udp list id, bufferindex, value

UdpOutAddShort Add a short (short integer) of 2 bytes on position

bufferindex

3: udp list id, bufferindex, value

UdpOutAddLong Add a long (long integer) of 4 bytes on position

bufferindex

3: udp list id, bufferindex, value

UdpOutAddFloat Add a float (floating point number) of 4 bytes on

position bufferindex

3: udp list id, bufferindex, value

UdpOutAddString Add a string of characters on position bufferindex.

The string is null terminated and strlen(str)+1 bytes

are added to the outputbuffer

3: udp list id, bufferindex, value: value

must be a string

UdpInGetByte Get a byte (unsigned char) from the readbuffer

starting from position bufferindex

2: udp list id, bufferindex

UdpInGetShort Get a short (short integer) from the readbuffer

starting from position bufferindex (read 2 bytes)

2: udp list id, bufferindex

UdpInGetLong Get a long (long integer) from the readbuffer starting

from position bufferindex (read 4 bytes)

2: udp list id, bufferindex

UdpInGetFloat Get a float (floating point number) from the

readbuffer starting from position bufferindex (read 4

bytes)

2: udp list id, bufferindex

UdpInGetString Get a string from the readbuffer starting from

position bufferindex: this is read until a 0 is found

(null terminated string), for example:

Str := UdpInGetString(1);

length := strlen(Str);

2: udp list id, bufferindex

 COMMUNICATION with Control
GetByteArrayValue Gets the value of a byte in a datacommunication

buffer of 256 bytes long. Bytes are set by the

FillByteArray Procedure

1: index of buffer (0..255)

lookmode From either buttons that signal the looking direction

or facetracker. Gives the values 0..10, each

signifying a specific meaning (see gentraffic.sci)

0

ExpDataDefined Returns 1 if called from an EXP file (experiment

specification file)

0

headyaw Horizontal angle of face, measured by headtracker

FaceTrackNoIR

0. Value from 90 (degrees): head turned

right, to -90 (degrees): head turned left. 0

dgrees is looking forward

Headpitch Vertical angle of face, measured by headtracker

FaceTrackNoIR

0. Not used.

GetKeypadButton Numerical button 0..9 from keyboard or keypad 0: -1 is no keypadbutton pressed, 0..9 is

keypad number

guibutton1 Button B1 on GUI pressed by user 0: true or false

guibutton2 Button B2 on GUI pressed by user 0: true or false

Carnetsoft BV Description functionality scenario scripting language

27

guibutton3 Button B3 on GUI pressed by user 0: true or false

guibutton4 Button B4 on GUI pressed by user 0: true or false

Table 3. Overview of system defined functions that return a string

Functionname Meaning Input parameters
strcat returns a string that appends one string to another 2: string, string

num2str converts a number into a string 3: number, fieldwidth, number of digits

after comma

SubjectIdent returns the subject identification string from the EXP

file (experiment specification file)

0

date returns a string with date and time information 0

systemtimeUTC Returns a string with current UTC data en time in

msCurrent UTC timestamp in ms, absolute time with

respect to start of universal epoch, same on all

computers

For example 2020:06:23:12:03:32:231

For 23 june 2020 time 12:03:32 and 231 ms.

0

strpart returns a substring of an inputstring 3: string, index where to start, number of

characters

strlen returns the number of characters 0

DataDef Returns Data Specification file name 0

programfolder Name of folder where all python code is located 0

9 System defined procedures

9.1 General overview

System defined procedures handle some predefined task. The general format is

Proc(Procedurename, <list of parameters>);

All Procedure names are reserved keywords. The parameters may be any expression that

results in a value. A procedure does not return a value. In the following example, a string is

printed to the console.

Var { testvalue; }

String { outmessage; }

K.

outmessage := strcat(“Test number “, num2str(testvalue, 3, 0));

Proc(Print, outmessage);

Here are a few examples of categories of procedures.

Carnetsoft BV Description functionality scenario scripting language

28

9.2 Overview of system defined procedures

Table 4. Overview of system defined procedures

Procedure name Meaning Input parameters

 CABIN CAR SETTINGS

SteerTorqueFact Set a steertorque factor 1: steertorquefactor

BrakeForceFact Set a brakeforce factor 1: brakeforcefactor

BrakeMax Set the maximum brakeforce 1: maximum brakeforce (Newton)

SetGearDirect Set the gear from script, useful if no gearshifter

is available or when driving in automatic gear (to

set gear to 2 = drive)

1: gear

GearMode Set the gear mode 1: 0..2: 0 = 4 gears, 1= 5 gears, 2 =

special automatic, 3 = automatic

FOR AUTOMATIC GEAR USE 3

SwitchControl set control to manual (human controls speed

and steering), Automatic (automatic control over

speed and steering) or semi-automatic (human

controls speed and steering is automatic) or

speed_automatic (automatic speedcontrol via

Part[MainTarget].MaxVelocity and other rules

while steering is human controlled)

1: 1..3: 1 = MANUAL,

2= AUTOMATIC, 3

=SEMI_AUTOMATIC,

4=SPEED_AUTOMATIC

SetSpeed set the speed of the simulator car. With this

function you can manipulate the speed of the

simulator car

3: speed (in m/s), gear, flag (On/Off)

MaxRollAng set the maximum roll angle 1: angle in degrees

MaxPitchAngle set the maximum pitch angle 1: angle in degrees

ResetCabin Reset the cabin (engine off, speed = 0 etc) 0

StopEngine Stops the engine and the car 0

StartEngine Starts the engine 0

SetLimitMaxVelocity Set maximum velocity if speed is controlled by

simulatorcar instead of human

2: maxspeed (in m/s), flag (On/Off)

ClearFuelCount (re)sets the fuel counter to zero 0

BrakeFactor sets the extent to which the car brakes as a

function of brakepedal position)

1: Default = 18, but a comfortable value is

7.27

FrictionFactor sets the roadfriction 1: Default = 0.85. More is larger

roadfriction.

SpeedBump Gives a pulse on the steering wheel if you pass

a speedbump

0

SetCrashSound Switch crash sound on/off 1: 0 (=off) or 1 (=on)

SetSteeringDelay Add a time before the steering wheel responds

(for example alcohol simulation)

1: steering delay in secondes

SetBrakeDelay Add a time before the brake pedal responds (for

example alcohol simulation)

1: brake delay in seconds

 STEERING DISTURBANCE

CrossWind Sets the static velocity of the crosswind acting

upon the vehicle model. The wind is set

perpendicular to the driving direction (pos wind

is 90 degrees from the left

1: velocity

AlongWind Sets the static velocity of the longitudinal wind

acting upon the vehicle model. The wind is set in

the driving direction (pos. wind is opposite wind,

neg wind from behind).

1: velocity

RoadBank Sets the virtual slope in degrees. A positive value

represents a banking angle to the right and

requires left-steer compensation

1: degrees

RoadSlope Sets the virtual road slope (not graphically !),

positive values represent increased raad slope

and will slow down the car, while a negative

value increases driving velocity

1: degrees

SteerOffset Sets the value of the steering wheel offset angle

in degrees. A positive value should be

compensated for by steering right and vice

versa.

1: degrees

Carnetsoft BV Description functionality scenario scripting language

29

 DATA STORAGE PROCEDURES

OpenData Open a binary datafile and start datasampling 2: string (binary filename without

extention), string (string to include in

header of datafile)

CloseData Stop datasampling and close binary datafile 0

ClearDataVariables Clear all datavariables for storage in binary file 0

AddDataFunction Add a UserDefinedFunction for datastorage 1: Name of Userdefined function, between

“” characters, as in Proc(

AddDataFunction, “MyFunction”);

AddDataVariable Add a datavariable 1: variable type

SetSampleFrequency Set the sample frequency for datasampling 1: frequency (Hz)

SetEventCode Set an eventcode (together with the currenttime)

in the eventfile

1: number (eventcode)

SetTimeAndEventCode Set an eventcode and a time 2: number (eventcode), number

(timevalue)

 ROAD NETWORK RELATED

DefaultMaxSpeed Set the default maximum velocity for the entire

roadnetwork

1: speed (in m/s)

SetCountry country (used in handling of behavioural rules,

these are different for different countries)

1: 0=Netherlands, 1 = Germany etc.

SetTrafLightStatus Sets the traffic light status (Red, Yellow, Green,

YellowRed, YellowFlash, Blank) of a traffic light

for a specific lane. If there is no trafficlight then it

checks if the path on which the lane is located,

has a traffic light. If no traffic light can be found

it does nothing.

2: laneid, status (Red, Green, etc).

Proc(SetTrafLightStatus, laneid, status)

can be used for both path-connected and

lane connected traffic lights.

First find the laneid and then apply the

function:

Id := GetLaneId(Part[].SegmentNr,

DLane, 0);

Proc(SetTrafLightStatus, Id, Red);

 PARTICIPANT RELATED

DeletePart Delete a traffic participant 1: participant id

Perform add a UserDefined function to a participant: the

participant evaluates this function each cycle

f.i Proc(Perform, 2, “EvaluateThis”);

2: participant id, string (name of

userdefined function: this function must

have no parameters !)

RemovePerform remove the UserDefine function for the

participant

1: participant id

AddScenario adds a local scenario (defined by Define

PartScen) to the participant

2: participant id, scenarionumber

RemoveScenario removes a local scenario from a participant 2: participant id, scenarionumber

SetHandlerParticipant set a userdefined function as signal handler for

the participant, f.i. Proc(SetHandlerParticipant,

OnCollision, 0, "HandlerOnCollision"); (0 =

Participant 0 which is the simulatorcar)

3: signal (OnDelete, OnRouteError,

OnCollision), participant id, string (name

of userdefined function)

LefthandDriving Sets the system (all driving rules and participant

behaviour) to the British lefthand driving system

1: flag (True, False)

AddRuleSpeed add a speed value (each cycle) that is integrated

in the behavioural rules of the participant

2: participant id, speed (in m/s)

AddRuleLatpos add a required lateral position 4: participant id, time within it must be

reached, goal lateral position, priority

 MAINTARGET RELATED (Simulatorcar)

RepositionRouteByIndex Reposition the routepointer according to a route

index

1: routeindex (0=first path of route)

SetRouteHandlingSSL flag to indicate whether the system should reset

the route if the car deviates from the planned

route

1: flag (True, False)

 ACTOR RELATED

RemoveActor Delete an actor (animated object) for example

Proc(RemoveActor, Act1);

1: actor id

ShowActor Hide or show an actor, for example Proc(

ShowActor, Act1, Off) to hide the actor (remove

from view)

2: actor id, On (show) or Off (hide)

Carnetsoft BV Description functionality scenario scripting language

30

ClearTrackActor Clear all trackelements for the actor id 1: actor id

AddStraightTrackActor Add a straight track to the tracklist 2: actor id, length of track (in m)

AddCurveTrackActor Add a curve track to the tracklist 4: actor id, direction (Left/Right), radius (in

m), turnangle (in degrees)

StoreTrackActor trackdefinition is completed: initialize track

pointer

1: actor id

StartAnimation Start a named animation for the actor, f.i.. Proc(

StartAnimation, id, "Walk");

2: actor id, string of names animation

SetMaxVelocityActor Forward speed at which animated object moves. 2: actor id, speed in m/s

SetVelocityActor Set current velocity actor 2: actor id, speed in m/s

SetMaxaccActor Set maximum acceleration actor 2: actor id, acceleration in m/s2

SetMaxdecActor Set maximum deceleration actor 2: actor id, acceleration in m/s2

SetRemoveDistActor Set remove distance in meters 2: actor id, remove distance in meters

SetCanCollideActor Set the CanCollide flag for this actor. If false the

car does not generate a collision event when

MainTarget collides with the actor. Useful for 3D

objects that are positioned dynamically as actor

over the road.

2: actor id, True or False

SetPositionHeadingActor Set, x, y, z and heading of existing actor 5: actor id, x, y, z, heading

 SCENARIO RELATED

StartScen Start a scenario immediately, f.i. Proc(

StartScen, 10);

1: scenario id

EndScen terminate a scenario immediately 1: scenario id

SignalHandler terminate all scenarios with signalhandlerflags

set, f.i. Proc(SignalHandler, Command

TerminateScenario); this will terminate all

scenarios for which the flag

TerminateOnCommand has been set to true

1: signalhandlerflag (ErrorTerminate

Scenario or CommandTerminate

Scenario)

 FILE ACCESS

OpenFile or

OpenFileWrite

Create an ascii file (for writing) to store text data,

f.i. Proc(OpenFile, “TempStore”); The can be

opened any number of files simultaneously

Datafiles MUST be in the folder /data under the

script file folder

1: string (filename)

OpenFileRead Open a existing ascii file for reading data.

Datafiles MUST be in the folder /data under the

script file folder

1: string (filename)

WriteFile Write text data to a named file, f.i. Proc(

WriteFile, “TempStore”, “sample text”);

1: string (filename), string (text data)

CloseFile Close the file with the specified name 1: string (filename)

Exec Execute a dis command, for example Proc(

Exec, "ImpairConv.bat");

1: string

 MESSAGES AND SOUNDS

Print Print a string to the console 1: string

ClearMessages Clear all scheduled speech messages 0

SetMaxPriority set the maximum priority of scheduled speech

messages to be sent to the GUI

1: number (0..3)

ScheduleIsdMessage send a speech message to the scheduler that

will handle and send it to the GUI. The

speechmessage id is a number that conforms to

a .wav file on the GUI (f.i. Proc(

ScheduleIsdMessage, 10023, 1, 0); will play the

wav file 10023.wav on the GUI PC.

3: number (speech message id), priority

(0..3), flag (always set on 0)

PrintGui print a message to the blue message box of the

StControl userinterface

1: string (between “” characters)

SetDebugFlag Set the debuglevel for console prints 1: 0 = All Starts and Ends of scenarios are

printed to the console. Should be 1 by

default

Send3DSoundSignal Send a soundsignal to a specific channel at a

3D soundlocation. For example

Proc(Send3DSoundSignal, 0, 1, On, "warning

");

4: 1) slot: there are 3 slot positions that

can be active simulataneously

2) location: 0=sound on left, 1 = forward

(middle), 2 = sound on right

3: On or Off

4: String: filename (in \sounds without

extention), MUST be a wav file

Carnetsoft BV Description functionality scenario scripting language

31

Horn3D Runs horn sound to left, middle or right: sound

stimulus in 3D sound

3: left, middle, right: 1 = on, 0 = off

 SENDING DATA OVER ETHERNET

FillByteArray fill a position in an indexed array with an

unsigned character

2: index (0..255), value (unsigned char)

SendByteArray send the array with 255 bytes via TCP 0

SendAutomationData Automation data to control for storing in student

assessment system

3

 GRAPHICS RENDERING

StimPicture Proc(StimPicture, "AU_VoorrangAlgemeen",

MainPopupX, MainPopupY, 20, 20, 1);

Send a picture to the middle rendering display

6: 1) string (bitmap name, must be a *.png

file), 2) X pos angle with respect to center

of screen, 3) Y pos angle with respect to

center of screen, 4) width (angle), 5)

height (angle), 6) ON (0 = off, 1 = on,)

StimTopPicture Proc(StimTopPicture,

"AU_VoorrangAlgemeen", MainPopupX,

MainPopupY, 20, 20, 1);

Send a picture to the middle rendering display

which can be used together with StimPicture

and always is on top

6: 1) string (bitmap name, must be a *.png

file), 2) X pos angle with respect to center

of screen, 3) Y pos angle with respect to

center of screen, 4) width (angle), 5)

height (angle), 6) ON (0 = off, 1 = on,)

StimPictureDisp Proc(StimPicture, "AU_VoorrangAlgemeen",

MainPopupX, MainPopupY, 20, 20, 1, 1);

Send a picture to the left, middle, or right

rendering display

7: 1) string (bitmap name, must be a *.png

file), 2) X pos angle with respect to center

of screen, 3) Y pos angle with respect to

center of screen, 4) width (angle), 5)

height (angle), 6) ON (0 = off, 1 = on,), 7)

display: 0=middle, 1=left, 2 = right

SetFog Set fog intensity and colour 2: 1) fog intensity, 2) fog colour (gray

value from 0..1

SetSky Set a skydome id 1: skydome id

SetDayLight Either day or nigh driving 2: 1) 1=night, 0 = day. 2) not used

SetBlur Blurs the image of rendering (as in alcohol

simulation)

1: > 1.0 = normal, 0 = maximum blur

SetWeather Proc(SetWeather, 1, 1); 2: 1) 1=rain, 2= snow particle animations

2) intensity (0..10), not used

ScreenText Text on rendering display 5: 1) output string, 2) X, 3) Y, 4) 1 = on,

0 = off, 5) display: 0=middle, 1=left, 2 =

right

Pdt Draw PDT red block on display 1: angle, -1 if remove

SetRailwayStatus Sets all railwaycrossing animations and lights on

or off

1: 1 or 0 (On or Off)

SetDynObjectTexture Sets the texture of a dynamic 3D object 3: string Id (objected as in *.ref file), string

nodename (the named node in the 3D

object), string TextureName (the name of

the texture, must be located in the folder

\models\textures)

SetCarTexture Sets a texture at the rear windshield of a car, for

example Proc(SetCarTexture, num2str(PNr, 2,

0), "windshield", "boy.png");

3: 1) string Participant Id as set by

CreatePart, 2) string nodename (the

named node in the model of the car), 3)

string TextureName (the name of the

texture, must be located in the folder

\models\textures)

Carnetsoft BV Description functionality scenario scripting language

32

SIGN MATERIAL

changes in next 4

procedures

- First value in *.ref file must be 2 instead of

1

- *.sign file must be present in folder where

*.bam resides

If sign id is set to -1, then all signs are

changed

SetSignColor Sets the ambient material rgba values of a sign

with a specific id

5: unique sign id, r, g, b, a (alpha) of

textures

SetSignDiffuse Sets the diffuse material rgba values of a sign

with a specific id: light reflection when lit by

directional light

5: unique sign id, r, g, b, a (alpha) of

textures

SetSignEmission Sets the emissive material rgba values of a sign

with a specific id: sign glows as in a glow in the

dark

5: unique sign id, r, g, b, a (alpha) of

textures

SetSignShininess Sets the shininess value of a sign with a

specific id

2: unique sign id, value

Road MARKING

MATERIAL changes in

next 4 procedures

[From version

November 2022]

- First value in *.ref file must be 2 instead of

1

If segment or intersection id is set to -

1, then all marking for all segments or

intersections are changed. If texture

reference is set to -1 then all road

markings on the segment or

intersection are changed

SetMarkingColor Sets the ambient material rgba values of a

specific set of road markings.

Example: Proc(SetMarkingColor, 0, -1, -1, 0.6,

0.6, 0.6, 1.0);

Sets the ambient material for all segments with

all texture references to a grey color (0.6, 0.6,

0.6).

7: 1) segment or intersection: segment =

0, intersection = 1, 2) id of segment or

intersection or -1, 3) texture reference id in

egg file, 4) r, 5) g, 6) b, 7) a

SetMarkingDiffuse Sets the diffuse material rgba values of a

specific set of road markings: light reflection

when lit by directional light

7: 1) segment or intersection: segment =

0, intersection = 1, 2) id of segment or

intersection or -1, 3) texture reference id in

egg file, 4) r, 5) g, 6) b, 7) a

SetMarkingEmission Sets the emissive material rgba values of a

specific set of road markings: marking glows as

in a glow in the dark

7: 1) segment or intersection: segment =

0, intersection = 1, 2) id of segment or

intersection or -1, 3) texture reference id in

egg file, 4) r, 5) g, 6) b, 7) a

RENDER PROCESSES Rendering processes that are executed

once or continuously can be activated.

These processes must be defined in python

in the rendering engine

Id = 1..5: 5 rendering processes

reserved

AddRenderProcessOnce Activate a function in world.py that runs once 1: id of process, for example Proc(

AddRenderProcessOnce, 1) runs the

code as defined in

World.RenderProcessOnce1()

AddRenderProcessCont Activate a function in world.py that runs every

frame

1: id of process

RemoveRenderProcess

Cont

Stop running a function in world.py that runs

every frame

1: id of process

SendWarningIcon Send an icon to a specific rendering surface, for

example Proc(SendWarningIcon, 0, 0, "myicon

");

3: 1) signal slot (forleft and right mirror slot

is ignored, only 1, and 2 slots for

dashboard:0,1) slot is position on

dashboard

2) location: 0=dashboard, 1=left mirror,

2=right mirror

3) string (name of file in \textures without

extention). If string is empty ("") then icon

is removed. Icon on/off is controlled by

different icons. filename MUST be *.png

 VEHICLE MODE

SetEngineMu Set road friction 1:

SetEngineMaxPower Set power of engine 1:

SetEngineRedRpm Set rpm level cutoff 1:

SetSteeringRatio Set steering ratio (normally approx. 19) 1:

SetRoll Enable roll of simulated cabin 1: on/off

SetPitch Enable pitch of simulated cabin 1: on/off

Carnetsoft BV Description functionality scenario scripting language

33

 OTHER

PsychoPyControl Send control bytes to the PsychoPy application 2: byte1, byte 2.

SendGenButtonStatus Send an integer value to the rendering engine

(can be treated in the rendering code as desired)

1: integer

10 Statements, conditions and expressions

10.1 Statements

The general format of a statement is:

 [ident ":=" expression";" |

 "When" condition";" |

 Procedure ";" |

 "If" condition { [Statement;...] }

 ["ElseIf" condition { [Statement;...] }]

 ["Else" { [Statement;...]] |

 ‘While block’]

With a statement there is a difference between an assignment (using :=), a condition (in

combination with the reserved word When), a procedure, defined as the keyword Proc(

procedurename, list of parameters) and If blocks.

Assignment

An assignment is defined as

ident ":=" expression ";"

ident is a so-called left-value. It receives the value of the expression.

When (condition)

This is a statement, terminated with a ";". It is defined as :

"When" (condition) ";".

This statement is used as a start or end condition for scenarios and for actions. They may be

absent in which case the start or end condition is assumed to be TRUE.

If block

An if block executes statements depending on a condition. It is defined as

"If" (condition) "{" [statement; [statement;...]] "}"

["ElseIf" (condition) "{" [statement; [statement;...]] "}"]

["Else" "{" [statement; [statement;...]] "}"]

An If and an ElseIf must be followwed by a condition. An Else must not be followed by a

condition. An ElseIf or an Else must be preceded by an If. In an If block 0..n ElseIf are

allowed, but only 1 Else if allowed. This Else must be the last subblock of the If block.

While block

A while block repeatedly executes statements while a condition is True. Within the block the

Carnetsoft BV Description functionality scenario scripting language

34

condition must become False. This repetition takes place within 1 simulation frame.

"While" (condition) "{" [statement; [statement;...]] "}"

10.2 Condition

A condition has the general format:

[expression ("=" | "!=" | "<" | "<=" | ">" | ">=") expression |

 expression ("and" | "or") expression]

The logical operators {and, or} can be used. Furthermore, there are the following relational

operators: =, != (not equal to), <, <=, > and >=.

An elementary condition has the operators =, !=, <, <=, > or >= between two expressions. A

compound condition consists of elementary conditions, separated by the operators "and",

"or".

A condition must be preceded with the word "When", or with the keyword "If" or "ElseIf".

Because a "When condition" clause is a statement it must be closed with a ";". "If", "ElseIf"

and "Else" clauses are blocked. This means the block always starts with a "{" and ends with a

"}", but the "}" is never terminated with a ";".

Priorities of elementary or compound conditions can be expressed by extra brackets, for

example :

When ((a and b) or (c and d));

10.3 Expression

An expression has the general format:

["+" | "-"] term {("+" | "-") term}

Term

factor {("*" | "/") factor}

Factor

ident | number | "(" expression ")" | Function

Function

A function returns a value, has a name and 0..n parameters, separated by commas. The

parameters are expression. It can be either a Userdefined function or a system define

function.

functionname "(" [expression ["," expression ...]] ")"

For example : tan(var2*abs(33*var1/var3))

has 1 parameter. It returns the tangent of the input expression.

Carnetsoft BV Description functionality scenario scripting language

35

Ident

object "[" [ident | number | constant | UserDefinedVariable] "]" "." variable

 || UserDefinedVariable

For the object type see chapter 11.

11 Objects

11.1 General overview

The system knows a number of different types of objects. The names of objects are reserved

keywords:

- Scen, PartScen (a scenario)

- Part (a participant)

- Action

- Inter (an intersection)

- Path

- Segment

An object is a general data type that is instantiated by an ident, a number or a symbolic

constant between []. For example Scen[1] or Part[3]. In this case a number is used. Also, a

symbolic constant with a logical meaning can be used, like Part[MainTarget]. A userdefined

symboloc constant may also be used, as in

Assign DETECTSPEED 2000

K

a := Scen[DETECTSPEED].NrTimes;

When there is no instantiation given, the default object instantiation is used. Also an ident

may be used to express the instantiation, for example :

Path[Path[Part[MainTarget].PathNr].PathFromRight].Length

or

Path[Var_1].Length, where Var_1 is a UserDefinedVariable that has been initialized before.

With a certain objecttype, a set of variables may be used. For example, Part[].Velocity is the

speed (in m/s) of the current (default) participant.

The variables can be changed with an assignment, f.i. Part[].Velocity := 10; or read, f.i. :

Part[].Velocity := Part[MainTarget].Velocity; or :

When (Part[MainTarget].Velocity <= 20);

When an ident is left of the assignment (":=") symbol, the ident is an l-value. In all other

cases it is an r-value. An r-value is being "read" and an l-value is being "set". With nested

identifiers, all inner identifiers (identifiers within the first [..]) are r-values. With an

assignment, only the outer identifier is an l-value. Some variables belonging with a certain

object are only allowed to be r-values.

11.2 Scen object, PartScen object

A scen object is a scenario. Variables can be set or read. A PartScen is a scenario that is

allocated to a specific Participant. The difference between these two types of scenarios are:

- a Scenario is a global scenario. Only 1 instantiation can be active at the same time. So, if

Scen[4] is active it must stop before it can be active again.

- a PartScen is a local scenario and the same local scenario can be attached to any number

Carnetsoft BV Description functionality scenario scripting language

36

of participants. This is done via the following Procedure:

Proc(AddScenario, PNr, PartScen number); This mechanisms is used to let a specific car

perform a certain task.

The following table gives an overview of variables for this object type. An example to set a

variable:

Scen[100].NrTimes := 2;

You can also read a viariable as in :

Define Scen[101] {

 Start {

 K.

 Scen[].NrTimes := Scen[100].NrTimes;

 }

}

Table 5. Variables of objecttype Scen

Variable Read Set Value
Description + + String

Duration + + number

NrTimes + + number

Ended + - flag (True/False)

Started + - flag (True/False)

Commanded + - flag (True/False)

StartCon + - flag(True/False)

EndCon + - flag (True/False)

TerminateOnError + + flag (True/False)

TerminateOnCommand + + flag (True/False)

Type + - number (0=global scenario, 1=local scenario

PartScen)

Description is a string ("...") that is used in the GUI as a scenario description. It can not be

changed during runtime of the simulator. If the variable Description has been set, the

descriptionstring will be send to the GUI and displayed in the list of scenarios. The operator is

then able to monitor which scenarios are current and which have been activated.

Duration specifies the time duration of the scenario. Default this is infinite. When Duration is

set, the maximum time duration is specified. When no other endcondition becomes true, the

scenario is aborted after this time. When Duration is being read, the time since the moment

the scenario was activated is given.

NrTimes specifies the number of times the scenario may be activated. When this is set, the

maximum number of times the scenario may be activated is specified. When it is read, the

number of times the scenario was activated (since runtime, inclusive of the current

activation) is given.

Ended is a flag that indicates whether the scenario is ended. It is True after the scenario is

finished.

Started is a flag that indicates whether the scenario is active. It can only be read.

Commanded is a flag that indicates whether the scenario may be called from outside the

program (via the GUI). It can only be read. It may be applied as:

Start {

 When (Scen[].Commanded = True);

}

Carnetsoft BV Description functionality scenario scripting language

37

In that case the scenario will start if it has been selected on the GUI (via select scenario and

start scenario). In order to be shown on the interface, also the variable ‘Description’ must be

set.

StartCon can only be read and returns True or False depending on whether the

startcondition for scenario activation is still True or False. This can for instance be used in

the endcondition to switch the scenario off if the startcondition is no longer True, thus

simulating a "while loop". It can also be used for simulation of "if .. then else if ... then etc."

constructions. For example:

Define Scen[100] {

 Start {

 When (Part[MainTarget].Velocity > 33.3);

 K.

 }

 End {

 When (Scen[].StartCon = False);

 }

}

EndCon can only be read and returns True or False depending on whether the endcondition

of the scenario is True or False.

TerminateOnError is a flag that indicates whether the scenario must terminate when an

errorcondition occurs. The error condition is signalled via Proc(SignalHandler,

ErrorTerminateScenario);

TerminateOnCommand is a flag that indicates whether the scenario must terminate when a

scenario is switched on via the ‘Commanded’ variable. This is signalled via Proc(

SignalHandler, CommandTerminateScenario); In the following example a scenario is

specified that is activated from the userinterface (GUI). If it is commanded to start, it’s own

flag ‘TerminateOnCommand’ is set to false, to avoid that it is killed immediately by the

signalhandler. Then the signalhandler is called with the instruction to terminate any other

scenario that was started from the GUI (i.e., scenarios that have the Commanded flag set to

true). After that, the flag TerminateOnCommand is set to true, so that this scenario is

terminated if another scenario is commanded to start from the GUI.

Define Scen[74] {

 Var { a; }

 Start {

 When (Scen[].Commanded = True or StartScen20 = True);

 Scen[].Description := "Merging into traffic;

 If (Scen[].Commanded = True) {

 Scen[].TerminateOnCommand := False;

 Proc(SignalHandler, CommandTerminateScenario);

 SuperFase := 0;

 StartScen20 := True;

 }

 Scen[].TerminateOnCommand := True;

 }

 End {

 When (StartScen20 = False);

 }

}

Carnetsoft BV Description functionality scenario scripting language

38

11.3 Action object

An Action object is an action. Variables can only be read or set within the scope of the

scenario for which they apply.

Table 6. Variables of objecttype Action

Variable Read Set Value
Duration + + number

NrTimes + + number

Ended + - flag (True/False)

Started + - flag (True/False)

StartCon + - flag(True/False)

EndCon + - flag (True/False)

The meaning of these variables is comparable to that of the Scen object.

11.4 Inter object (intersection)

An intersection is a node where more than one roads connect. Variables of this object type

can only be read because an intersection is part of the static roadnet structure that cannot be

changed on-line.

Table 7. Variables of objecttype Inter

Variable Read Set Value
NrArms + - number

Controlled + - flag (True/False)

NodeType + - intersectiontype: 0..3; 0 = Normal_Int, 1 =

Deadend_Int, 2 = Virtual_Int, 3 = Roundabout_Int

NrArms gives the number of branches of an intersection. A T-junction has three branches

and an X-crossing has 4 branches.

Controlled is a flag that indicates whether the intersection is controlled by trafficlights. In that

case Controlled = True.

NodeType returns the type of intersection. Type can be 0 (normal intersection), 1 (Deadend

intersection: the road stops after this road, intersection has only 1 branch) , 2 (Virtual

intersection: not a real intersection but a connection between two roads, intersection has 2

branches), 3 (roundabout, intersection is part of a roundabout complex).

Carnetsoft BV Description functionality scenario scripting language

39

11.5 Segment object

A segment is a part of a road. It can be either straight or curved. Variables of this objecttype

can only be read because a segment is part of the static roadnet structure. A segment has

0..n lanes. These lanes are of a specific type. DLanes are normal driving lanes. These should

be at least 1 DLane on each segment. An ExitLaneRight, ExitLaneLeft, EntryLaneRight,

EntryLaneLeft, HardShoulder, HardShoulderLeft, BicycleLaneRight, BicycleLaneLeft,

PavementRight and PavementLeft are special lanetypes.

Table 8. Variables of objecttype Segment

Variable Read Set Value
Length + - number (in meters)

Radius + - number (in meters)

NrDLanes + - number

NrExitLanesRight + - number

NrExitLanesLeft + - number

NrEntryLanesRight + - number

NrEntryLanesLeft + - number

NrHardShoulders + - number

Width + - number

Slope + - Longitudinal slop in degrees. Pos is ascending, Neg

is decending

Length is the length of the segment in meters, measured along the centerline of DLane[0]

(the rightmost driving lane).

Radius is the radius of the segment in meters, from the centerpoint to the middle line of

DLane[0]. If the segment is straight, the radius = 0.

NrDLanes is the number of DLanes.

NrExitLanesRight is the number of lanes of type ExitLaneRight.

NrExitLanesLeft is the number of lanes of type ExitLaneLeft.

NrEntryLanesRight is the number of lanes of type EntryLaneRight.

NrEntryLanesLeft is the number of lanes of type EntryLaneLeft.

NrHardShoulders is the number of lanes of type HardShoulder (rightmost lane on highway,

0 or 1).

Width is the roadwidth in meters.

Carnetsoft BV Description functionality scenario scripting language

40

11.6 Path object

A path is a logical connection between two intersections, or between two connectionnodes of

between an intersection and a connectionnode. It has a direction from Node A to Node B

(with Node being an intersection or a connectionnode). Most variables of this object type can

only be read. An exception is the status of a trafficlight group at the end of the path. This can

be also be set. Often there are more than one trafficlights at the intersection at the end of a

path. Setting the trafficlight sets all trafic lights at the end of the path and reinitializes all

trafficlights that are part of the trafficlight group. Also the variable EntranceAllowed can be

set. Although this variable is set during roadnetwork initialization (depending on signs), the

setting can be overruled, for example if you want a certain road to be a one-way street. In a

similar manner is it allowed to change the rigt-of-way regime at an intersection (at the end of

the path from the direction of the path).

Table 9. Variables of objecttype Path

Variable Read Set Value
Length + - number (in meters)

NrSegments + - number

TrafficLight + + number (Red, Yellow, Green, YellowRed,

YellowFlash, Blank. If there is no trafficlight then the

value is Absent)

GreenPhase + + number (seconds)

YellowPhase + + number (seconds)

YellowRedPhase + + number (seconds)

RedPhase + + Number(seconds)

PathFromRight + - number (path id)

PathFromLeft + - number (path id)

PathFromAhead + - number (path id)

PathToRight + - number (path id)

PathToLeft + - number (path id)

PathToAhead + - number (path id)

OppositePath + - number (path id)

ToInter + - number (intersection id)

FromInter + - number (intersection id)

ToCNode + - number (connectionnode id)

FromCNode + - number (connectionnode id)

EntranceAllowed + + flag (True/False)

Row + + number (GiveRow, RowOnLeft, RowOnRight,

RowOnBoth, EqualPriority, HaveRow)

LastCarNr + - number (participant id)

FirstCarNr + - number (participant id)

Length gives the pathlength in meters, measured along the center of all segments’ DLane[0].

NrSegments gives the number of segments on the path.

TrafficLight gives the current state of the trafficlight at the end of the path. When there is no

trafficlight, the result is Absent. The trafficlight can be set with the values Red, Yellow,

Green, YellowRed, YellowFlash, Blank. Absent has no meaning for setting the trafficlight.

GreenPhase can be set (and read) to change the green-time duration of the next trafficlight

group (on the path of the simulatorcar), if there is one.

YellowPhase can be set (and read) to change the yellow-time duration of the next trafficlight

group (on the path of the simulatorcar), if there is one.

YellowRedPhase can be set (and read) to change the yellow-red-time duration of the next

trafficlight group (on the path of the simulatorcar), if there is one. Normally this value is not

set. If it is set by the user, then an extra phase (simultaneous red and yellow) is added

Carnetsoft BV Description functionality scenario scripting language

41

between red and green, as in German traffic lights).

PathFromRight gives the pathnumber of the path that comes from right at the next

intersection from the perspective of the current path. When there is not path from right, the

return value is -1 or Absent. PathFromLeft gives the path from left and PathFromAhead

returns the path from ahead after the intersection, when there exists such a path.

PathToRight returns the pathnumber of the path to right (outgoing path at the next

intersection), from the perspective of the current path. Analogous are the variables

PathToLeft and PathToAhead. OppositePath gives the path number of the path in opposite

direction relative to the current path. So, if the current path goes from intersection A to B,

OppositePath goes from intersection B to A.

ToInter returns the number of the intersection where the path is going to, if there is one.

Otherwise –1 is returned (or Absent). In that case ToCNode should return a value other than

–1.

FromInter return the number of the intersection the path is coming from. To determine the

number of the most recent intersection that was traversed, the following two, functionally

identical, statements can be applied :

Path[Part[MainTarget].PathNr].FromInter, or

Path[Path[Part[MainTarget].PathNr].OppositePath].ToInter

Even simpler is :

Part[MainTarget].FromInter.

If FromInter is Absent then FromCNode should return a valid value.

ToCNode returns the number of the connectionnode where the path is going to, if there is

one. Otherwise –1 is returned (or Absent). In that case ToInter should return a value other

than –1.

FromCNode return the number of the connectionnode the path is coming from. If

FromCNode is Absent then FromInter should return a valid value.

EntranceAllowed is a flag that indicates whether the path is one way. If is it allowed to drive

into this path, the result is True. EntranceAllowed may be set by the user. If you want to

avoid that traffic turns into a certain path then set:

Path[..].EntranceAllowed := False;

Row returns the right-of-way regulation at the end of the path relative to other paths. The

signs can be overruled by setting this variable. Valid values are GiveRow, RowOnLeft,

RowOnRight, RowOnBoth, EqualPriority, HaveRow.

FirstCarNr can only be read. It returns the number of the first participant (from the last

intersection) on the respective path.

LastCarNr can only be read. It returns the number of the last participant (from the last

intersection, closest to the intersection the path is going to) on the respective path.

Carnetsoft BV Description functionality scenario scripting language

42

11.7 Part object (participant)

This is the participant object. A participant has a large number of variables that can be set

and read. A participant is a traffic participant.

Table 10. Variables of objecttype Part

Variable Read Set Value
PartNr + - number: Participant id (unique id)

Velocity + + number: current speed in m/s

Acc + - number: current acceleration in m/s
2

PathNr + + number: path id

NextPathNr + + number: path id

PrevPathNr + - number: path id

LastPathNr + - number: path id

SegmentNr + - number: segment id

NextSegment + - number: segment id

ToInter + - number: intersection id

FromInter + - number: intersection id

ToCNode + - number: connectionnode id

FromCNode + - number: connectionnode id

PrefLane + + number: DLane index

Lane + + number: synbolic constant (to set the lane) or lane id (to

read the lane)

LaneType + - number: type of lane

LaneIndex + - number: index of lanetype

LeftEdgeLineType + - number: line type (0..4)

RightEdgeLineType + - number: line type (0..4)

OnInterPlane + - flag (True/False)

OnRoundabout + - flag (True/False)

LatPos + + number: either positive (to the left of centerline through

DLane[0]) or negative (to the right of centerline through

DLane[0])

PrefLatPos + + number: either positive (to the left of centerline through

DLane[0]) or negative (to the right of centerline through

DLane[0])

WheelBase + + number: meters

CarLength + + number: meters

CarWidth + + number: meters

NextBusStop + - number: bus stop id

DisToBusStop + - number: distance in meters

DisToStopSign + - number: distance in meters

DisToStopLine + - number: distance in meters

DisToVOP + - number: distance in meters

DisToSegment + - number: distance in meters

DisToRealInter + - number: distance in meters

DisToInterCenter + - number: distance in meters

DisToInter + + number: distance in meters

DisFromInter + + number: distance in meters

DisToNextNode + - number: distance in meters

IntersectionTrackLength + - number: distance in meters

RemoveOnDistance + + number: distance in meters

DisFromMain + - number: distance in meters

Route + + number or symbolic constant: <pathid, Left, Right, Straight>

when set. Pathid when read

RouteIndex + - number >= 0

RouteLength + - number: distance in meters

RouteLenghtLeft + - number: distance in meters

NextTurn + + number: Left, Right, Straight

RoundaboutDir + + number: Left, Right, Straight

TurnAtEnd + + flag (True/False)

MaxVelocity + + number: m/s

CurrentMaxVelocity + - number: m/s. The current maximum velocity as defined by

infrastructue (road, signs) or MaxVelocity

MaxDec + + number: m/s
2

Carnetsoft BV Description functionality scenario scripting language

43

MaxAcc + + number: m/s
2

CarType + + cartype from cartypes.def, zerobased index (f.e. CarType 0

is the first car defined in cartypes.def)

DistanceDriven + + Distance driven in current simulation

AlarmOnMaxVelocity + + True or False. Normally the alarmlights are ON if

MaxVelocity has been set to 0, except when

AlarmOnMaxVelocity := False

ViewDistance + + Viewing ahead distance for sensor (300 meters default)

StopDis + + number: meters

Rt + + number: time in seconds

Heading + + number: vehicle heading in degrees with repect to the world

MaxG + + number: for example 0.25

TTC + - number: time in seconds

THW + - number: time in seconds

DisToRightEdgeLine + - number: distance in meters

DisToLeftEdgeLine + - number: distance in meters

DisToRightLaneEdge + - number: distance in meters

DisToLeftLaneEdge + - number: distance in meters

PositionOnRoad + - number: 1..3

LeadCar + - number: participant id

RearCar + - number: participant id

ApprCar + - number: participant id

LeftCar + - number: participant id

RightCar + - number: participant id

StraightCar + - number: participant id

DisToLeadCar + - number: distance in meters

DisToRearCar + - number: distance in meters

DisToApprCar + - number: distance in meters

FirstLeadOnMyLane + - number: participant id

FirstLeadOnRightLane + - number: participant id

FirstLeadOnRightLane2 + - number: participant id

FirstLeadOnLeftLane + - number: participant id

FirstLeadOnLeftLane2 + - number: participant id

FirstRearOnMyLane + - number: participant id

FirstRearOnRightLane + - number: participant id

FirstRearOnRightLane2 + - number: participant id

FirstRearOnLeftLane + - number: participant id

FirstRearOnLeftLane2 + - number: participant id

FirstApprOnMyLane + - number: participant id

FirstApprOnRightLane + - number: participant id

FirstApprOnLeftLane + - number: participant id

FirstApprOnLeftLane2 + - number: participant id

SecondLeadOnRightLane + - number: participant id

DisToFirstLeadOnMyLane + - number: distance in meters

DisToFirstLeadOnRightLane + - number: distance in meters

DisToFirstLeadOnRightLane2 + - number: distance in meters

DisToFirstLeadOnLeftLane + - number: distance in meters

DisToFirstLeadOnLeftLane2 + - number: distance in meters

DisToFirstRearOnMyLane + - number: distance in meters

DisToFirstRearOnRightLane + - number: distance in meters

DisToFirstRearOnRightLane2 + - number: distance in meters

DisToFirstRearOnLeftLane + - number: distance in meters

DisToFirstRearOnLeftLane2 + - number: distance in meters

DisToFirstApprOnMyLane + - number: distance in meters

DisToFirstApprOnRightLane + - number: distance in meters

DisToFirstApprOnLeftLane + - number: distance in meters

DisToFirstApprOnLeftLane2 + - number: distance in meters

DisToSecondLeadOnRightLane + - number: distance in meters

GuidedSpeedDif + - number: speed in m/s

RequiredSpeedMax + - number: speed in m/s

RuleMaxVelocity + + flag (True/False)

RuleFollow + + flag (True/False)

RuleAdaptToCurve + + flag (True/False)

RuleOvertaken + + flag (True/False)

RuleRowLeft + + flag (True/False)

RuleRowRight + + flag (True/False)

Carnetsoft BV Description functionality scenario scripting language

44

RuleRowStraight + + flag (True/False)

RuleOvertaking + + flag (True/False)

RuleEmergLeft + + flag (True/False)

RuleEmergRight + + flag (True/False)

RuleEmergStraight + + flag (True/False)

RuleRedTrafficLight + + flag (True/False)

RuleYellowTrafficLight + + flag (True/False)

RuleApproachOnMyLane + + flag (True/False)

RuleBusStop + + flag (True/False)

RuleStopSign + + flag (True/False)

AllowPassRight + + flag(True/False) passing right is allowed (default False)

RuleAdaptToMergingLead + + flag (True/False) let a merging leadvehicle merge in if it

uses the indicator (by slowing down), default True

GiveWayToMergingLead + + flag (True/False) move to the next lane if there’s a merging

lead vehicle that uses the indicator. Default False.

FrontSensor + + flag (On/Off)

RearSensor + + flag (On/Off)

InterSensor + + flag (On/Off)

ApproachSensor + + flag (On/Off)

UseBrakeLight + + flag (On/Off)

ShowDecel + + flag (On/Off): luminance of brakelight as a function of

deceleration, larger deceleration gives higher luminance

BrakeLight + + flag (On/Off). If set by user, it must be switched off by user

first in order to be controlled by vehicle.

UseIndicator + + flag (On/Off)

Indicator + + symbolic constants: IndicatorOff, IndicatorLeft,

IndicatorRight, IndicatorAlarm

If set by user, it must be switched off by user first in order to

be controlled by vehicle.

UseHeadLight + + Flag (On/Off)

HeadLight + + flag (On/Off), If set by user, it must be switched off by user

first in order to be controlled by vehicle. Switched on by

vehicle is at night.

SwingPhase + + number: time in seconds

SwingAmplitude + + number: distance in meters

Xpos + - number: coordinate position

Ypos + - number: coordinate position

IsPriorityVehicle + + number: (True/False). sets or reads whether it is a priority

vehicle (use of siren). A priority vehicle is treated differently

by other traffic.

SirenAlarm + + Sets the siren and alarm lights of an ambulance or firetruck

InList + - flag (True/False)

IsdType + + number: type

IsdCat + - number

RoadOrder + + The type of road the participant is on: 1=CountryRoad,

2=MotorRoad, 3=Highway, 4=UrbanArea

DumVar0 + + number

DumVar1 + + number

DumVar2 + + number

DumVar3 + + number

DumVar4 + + number

DumVar5 + + number

DumVar6 + + number

PartNr is the participant number of the car. This can be used to access each participant

individually. The simulator car can be accessed as MainTarget of 0, f.i.

Part[MainTarget].’Variable’, or Part[0].’Variable’. The id cannot be set: it is created by the

system in PNr := CreatePartIsd(); In that case PNr is the unique PartNr.

Velocity is the current speed in m/s. It can be set to give a participant an initial speed or

read.

Acc is the current acceleration in m/s². Can only be read.

Carnetsoft BV Description functionality scenario scripting language

45

PathNr is the current pathnumber. This is an important variable that can also be set. To

reposition a participant (f.i. to give it an initial position), a PartNr must be set, in combination

with either DisFromInt or DisToInt. There are no other ways of longitudinal positioning.

NextPathNr is the number of the next path.

PrevPathNr is the number of the previous path.

LastPathNr is the same as PrevPathNr.

SegmentNr is the number of the current segment.

NextSegment is the number of the next segment on the current path. If there is ony one

segment on the path, or if the participant is on the last segment of the current path, the result

is -1 or Absent.

ToInter returns the number of the next intersection, or –1 (Absent) if there is none.

FromInter returns the number of the last past intersection, or –1 (Absent) if there was none.

ToCNode returns the number of the next connectionnode, or –1 (Absent) if there is none.

FromCNode returns the number of the last past connectionnode, or –1 (Absent) if there was

none.

PrefLane refers to the preferred lane in which the participant drives. It can be set as the

preferred DLane index: f.i. 0 = DLane[0] (the rightmost normale driving lane, 1 = DLane[1]

(the lane to the left of DLane[0]) etc. If it is read te preferred DLane index is returned.

Lane gives the lane id on which the participant is (center of front bumper). Lane can also be

used to change the lateral position of the participant. In that case there occurs a repositioning

to the center of the respective lane. To set the Lane the symbolic constants RightLane,

LeftLane of RightShouder are used. So, f.i. Part[..].Lane := RightLane and LaneId :=

Part[..].Lane. Alternatively, a lane id can be used to set the Lane. This is only executed if the

lane id is a lane on the current segment.

LaneType returns the current LaneType: DLane, ExitLaneRight, ExitLaneLeft,

EntryLaneRight, EntryLaneLeft, HardShoulder, HardShoulderLeft, BicycleLaneRight,

BicycleLaneLeft, PavementRight, PavementLeft, ParkingRight, ParkingLeft

LaneIndex returns the current lane index. If there are 2 DLanes on the present segment, and

the participant is driving in the left lane then LaneIndex is 1.

LeftEdgeLineType returns the line type of the left edge line of the current lane. 0 = none, 1

= Continuous, 2 = one-three, 3 = Blockmarkings, 4 = three-nine

RightEdgeLineType returns returns the line type of the right edge line of the current lane 0

= none, 1 = Continuous, 2 = one-three, 3 = Blockmarkings, 4 = three-nine

OnInterPlane returns a flag (True/False) indicating whether the participant is on the

intersection plane.

OnRoundabout returns a flag (True/False) indicating whether the participant is on a

roundabout complex.

LatPos gives the lateral position in meters. It can also be used to change the lateral position.

In that case tge new lane is automatically computed and the particiant is moved laterally. A

negative lateral position means that the car is to the right of the centerline of DLane[0]. A

Carnetsoft BV Description functionality scenario scripting language

46

positive lateral position means that the car is to the left of the centerline of DLane[0]. A

lateral position of 0 indicates that the center of the car is precisely in the middle of the

rightmost driving lane (DLane[0]).

PrefLatPos gives the preferred lateral position. It can also be used to set a preferred lateral

position. Normally this is 0. A positive value lets the participant drive more to the left of the

centerline of DLane[0], while a negative lateral position results in driving to the right of this

centerline.

WheelBase sets or reads the wheelbase of the participant. This is the distance between the

front and rear wheel axes (in meters).

CarLength sets or reads the total length of the participant (in meters).

CarWidth sets or reads the width of the participant (in meters).

NextBusStop returns a bus stop id if a bus stop is approached. It returns Absent if these is

none.

DisToBusStop returns the distance (along the path) to the next bus stop. It returns 9999 if a

busstop could not be found

DisToStopSign returns the distance (along the path) to the next stopsign on the route. It

returns 9999 if a stopsign could not be found

DisToVOP returns the distance (along the path) to the zebra crossing on the route. It returns

9999 if a zebra crossing could not be found

DisToSegment returns the distance to the start of the next segment in meters.

DisToRealInter returns the distance to the next ‘real’ intersection (along the route). A real

intersection is an intersection that is not a ‘virtual’ intersection (with only two branches) and

not a connectionnode.

DisToInterCenter gives the distace along the path to the center point of the next

intersection, while all virtual intersection in-between are skipped.

DisToInter gives the distance to the start of the next node in meters. This is the distance to

the end of the current path. If a ‘real’ intersection is at the end of the current path then the

distance to the beginning of the intersectionplane is computed. Setting this variable must

occur in combination with setting PathNr. The order in which the assignments occur is not

significant.

DisFromInter gives the distance along the path from the last intersection. Setting this

variable must occur in combination with setting PathNr. The order in which the assignments

occur is not significant.

DisToNextNode gives the distance along the path to the next routenode.

IntersectionTrackLength gives the length of the total track on the next intersection,

depending on the route, if there is a next intersection one (else IntersectionTrackLength = 0).

RemoveOnDistance gives and sets the absolute distance (in meters) from the simulator car

(MainTarget) at which the participant is removed and deleted. This mechanism ensures that

the participant is removed when it gets too far away to be seen.

DisFromMain gives the absolute distance (in meters) from the simulator car (MainTarget).

Carnetsoft BV Description functionality scenario scripting language

47

Route sets the route of a participant. It can be assigned the values <Left, Right, Staight> or a

path id, and the values Clear and StoreRoute. Clear means that the route is cleared.

StoreRoute means that the specification of the route is ready and the route pointer is

initialized. Route appends the values to a route. For example :
 // first position participant

 Part[].PathNr := 21;

 Part[].DisToInter := 50;

 // then build route

 Part[].Route := Clear;

 Part[].Route := 12;

 Part[].Route := 14;

 Part[].Route := 8;

 Part[].Route := StoreRoute;

All paths in the route must connect to each other. Also, the first path in the route (12 in the

example) should connect to the current path (21 in the example).

If Route is read then the next pathid on the route is returned.

RouteIndex returns the current (zero based) routeindex).

RouteLength returns the total length (in meters) of the route.

RouteLengthLeft returns the length (in meters) of the route from the present position

NextTurn can be set or read with the values Right, Left or Straight.

RoundaboutDir can be set or read with the values Right, Left or Straight. Right = take first

exit, Straight = take second exit, Left = three quarters.

TurnAtEnd can be set or read with a flag (True/False). It is is True then the participant turns

around at the end of a deadend street (intersection with only 1 branch). If False, it stops at

the end of a deadend street.

MaxVelocity returns and sets the maximum allowed speed in m/s. This variable can be set

in order to control the speed of the car. This is the velocity the car strives for if it is not limited

by other rules.

MaxDec returns and sets the maximum allowed deceleration in m/s². When this is higher, the

car brakes harder and starts braking at a shorter distance from an object.

MaxAcc returns and sets the maximum allowed acceleration in m/s².

StopDis returns and sets the distance (in meters) the participants adds to the distance to an

object if stops. If, for example, StopDis is set to 1 meter, then the participant stops 1 meter

before a stopline or before the beginning of an intersection plane.

Rt is the reaction time of the virtual driver of a participant. This value is used in a number of

behavioural rules

MaxG is the amount of G accepted by the virtual driver of the oparticipant in driving curves.

For example, a value of 0.25 means that the maximum G-force accepted is 0.25*. With

higher values, velocity in curves is higher. In addition to this, this factor is moduled as a

function of the curve radius.

TTC is the time-to-collision (in seconds) to the first lead participant in the same lane as the

participant.

THW is the timeheadway (in seconds) to the first lead participant in the same lane as the

participant.

Carnetsoft BV Description functionality scenario scripting language

48

DisToRightEdgeLine is the distance (in meters) between the right side of the participant

and the right side of the road.

DisToLeftEdgeLine is the distance (in meters) between the left side of the participant and

the left side of the road.

DisToRightLaneEdge is the distance (in meters) between the right side of the participant

and the right side of the present lane.

DisToLeftLaneEdge is the distance (in meters) between the left side of the participant and

the left side of the present lane.

PositionOnRoad gets the present roadposition: 1= OnRoad, 2 = OffRoadRight, 3 =

OffRoadLeft.

LeadCar is the participant id of the first leadvehicle (not neccessarily in the same lane).

Absent if none.

RearCar is the participant id of the first rearvehicle (not neccessarily in the same lane).

Absent if none.

ApprCar is the participant id of the first approaching vehicle on the same road (not

neccessarily in the same lane). Absent if none.

LeftCar is the participant id of the first approaching vehicle from left at the next intersection.

Absent if none.

RightCar is the participant id of the first approaching vehicle from right at the next

intersection. Absent if none.

StraightCar is the participant id of the first approaching vehicle from ahead at the next

intersection. Absent if none.

DisToLeadCar gives the bumper to bumper distance to the first leadvehicle, measured

along the path of the car.

DisToRearCar gives the bumper to bumper distance to the first rearvehicle, measured along

the path of the car.

DisToApprCar gives the bumper to bumper distance to the first approaching vehicle,

measured along the path of the car.

FirstLeadOnMyLane is the participant id of the first leadvehicle in the same lane as the

participant. Absent if none.

FirstLeadOnRightLane is the participant id of the first leadvehicle in the first lane right of

the lane the participant is in. Absent if none.

FirstLeadOnRightLane2 is the participant id of the first leadvehicle in the second lane right

of the lane the participant is in. Absent if none.

FirstLeadOnLeftLane is the participant id of the first leadvehicle in the first lane left of the

lane the participant is in. Absent if none.

FirstLeadOnLeftLane2 is the participant id of the first leadvehicle in the second lane left of

the lane the participant is in. Absent if none.

FirstRearOnMyLane is the participant id of the first rearvehicle in the same lane as the

participant. Absent if none.

FirstRearOnRightLane is the participant id of the first rearvehicle in the first lane right of the

lane the participant is in. Absent if none.

FirstRearOnRightLane2 is the participant id of the first rearvehicle in the second lane right

of the lane the participant is in. Absent if none.

FirstRearOnLeftLane is the participant id of the first rearvehicle in the first lane left of the

lane the participant is in. Absent if none.

FirstRearOnLeftLane2 is the participant id of the first rearvehicle in the second lane left of

the lane the participant is in. Absent if none.

FirstApprOnMyLane is the participant id of the first approaching vehicle in the same lane as

the participant. Absent if none.

Carnetsoft BV Description functionality scenario scripting language

49

FirstApprOnRightLane is the participant id of the first approaching vehicle in the first lane

right of the lane the participant is in. Absent if none.

FirstApprOnLeftLane is the participant id of the first approaching vehicle in the first lane left

of the lane the participant is in. Absent if none.

FirstApprOnLeftLane2 is the participant id of the first approaching vehicle in the second

lane left of the lane the participant is in. Absent if none.

SecondLeadOnRightLane is the participant id of the second leadvehicle in the first lane

right of the lane the participant is in. Absent if none.

DisToFirstLeadOnMyLane gives the bumper to bumper distance to the first leadvehicle in

the same lane as the participant. Only valid if FirstLeadOnMyLane != Absent.

DisToFirstLeadOnRightLane gives the bumper to bumper distance to the first leadvehicle

in the first lane right of the lane the participant is in. Only valid if FirstLeadOnRightLane !=

Absent.

DisToFirstLeadOnRightLane2 gives the bumper to bumper distance to the first leadvehicle

in the second lane right of the lane the participant is in. Only valid if FirstLeadOnRightLane2

!= Absent.

DisToFirstLeadOnLeftLane gives the bumper to bumper distance to the first leadvehicle in

the first lane left of the lane the participant is in. Only valid if FirstLeadOnLeftLane != Absent.

DisToFirstLeadOnLeftLane2 gives the bumper to bumper distance to the first leadvehicle

in the second lane left of the lane the participant is in. Only valid if FirstLeadOnLeftLane2 !=

Absent.

DisToFirstRearOnMyLane gives the bumper to bumper distance to the first rearvehicle in

the same lane as the participant. Only valid if FirstRearOnMyLane != Absent.

DisToFirstRearOnRightLane gives the bumper to bumper distance to the first rearvehicle in

the first lane right of the lane the participant is in. Only valid if FirstRearOnRightLane !=

Absent.

DisToFirstRearOnRightLane2 gives the bumper to bumper distance to the first rearvehicle

in the second lane right of the lane the participant is in. Only valid if FirstRearOnRightLane2

!= Absent.

DisToFirstRearOnLeftLane gives the bumper to bumper distance to the first rearvehicle in

the first lane left of the lane the participant is in. Only valid if FirstRearOnLeftLane != Absent.

DisToFirstRearOnLeftLane2 gives the bumper to bumper distance to the first rearvehicle in

the second lane left of the lane the participant is in. Only valid if FirstRearOnLeftLane2 !=

Absent.

DisToFirstApprOnMyLane gives the bumper to bumper distance to the first approaching

vehicle in the same lane as the participant. Only valid if FirstApprOnMyLane != Absent.

DisToFirstApprOnRightLane gives the bumper to bumper distance to the first approaching

vehicle in the first lane right of the lane the participant is in. Only valid if

FirstApprOnRightLane != Absent.

DisToFirstApprOnLeftLane gives the bumper to bumper distance to the first approaching

vehicle in the first lane left of the lane the participant is in. Only valid if FirstApprOnLeftLane

!= Absent.

DisToFirstApprOnLeftLane2 gives the bumper to bumper distance to the first approaching

vehicle in the second lane left of the lane the participant is in. Only valid if

FirstApprOnLeftLane2 != Absent.

DisToSecondLeadOnRightLane gives the bumper to bumper distance to the second

leadvehicle in the first lane right of the lane the participant is in. Only valid if

DisToSecondLeadOnRightLane != Absent.

GuidedSpeedDif gives the speeddifference between the curren speed and the maximum

allowed speed according to the normative rules set. If this value is positive than the simulator

driver is driving too fast in relation to a set of normative rules. Speed difference is in m/s.

RequiredSpeedMax is the maximum speed allowed according to a set of normative rules. In

m/s.

Carnetsoft BV Description functionality scenario scripting language

50

RuleMaxVelocity can be switched on or off. If it is off, then the maximum velocity of the

autonomous agent (participant) is no longer controlled by traffic signs or area (buildup area,

maximum speed signs, highway signs and so on). The maximum velocity in that case is only

controlled by the preferred maximum velocity of that car (MaxVelocity) or by curves in the

road and other traffic.

RuleFollow switches the rules for car following on or off.

RuleAdaptToCurve switches the rules for speed control in curves on or off.

RuleOvertaken switches the rules for being overtaken on or off.

RuleRowLeft switches the rules for speedcontrol for traffic from left on or off.

RuleRowRight switches the rules for speedcontrol for traffic from right on or off.

RuleRowStraight switches the rules for speedcontrol for traffic from ahead after

intersections on or off.

RuleOvertaking swithces the rules for overtaking on or off.

RuleEmergLeft switches the emergency procedures for speedcontrol to traffic from left on or

off.

RuleEmergRight switches the emergency procedures for speedcontrol to traffic from right

on or off.

RuleEmergStraight switches the emergency procedures for speedcontrol to traffic from

ahead after intersections on or off.

RuleRedTrafficLight switches the rules for red traffic lights on or off.

RuleYellowTrafficLight switches the rules for yellow traffic lights on or off.

RuleApproachOnMyLane switches the rules for speedcontrol to oncoming traffic on or off.

RuleBusStop switches the rule for autonomous stopping for bus stops on or off (default off:

should be switched on for buses.

FrontSensor switches the perception of leadvehicles on or off.

RearSensor switches the perception of rearvehicles on or off.

InterSensor switches the perception of traffic approaching an intersection on or off.

ApproachSensor switches the perception of oncoming vehicles on or off.

UseBrakeLight is a flag to set the use of the brakelights on of off. If it is Off, then the

participants does not light up the brakelight when it brakes. If it is On, then the participant

uses the brakelights if necessary.

ShowDecel is a flag to control the luminance of the brakelights as a function of deceleration

in the renderers: when On, a larger deceleration results in higher luminance.

BrakeLight is a flag to switch the brakelights on, independenly from the brakelight control of

the autonomous agent.

UseIndicator is a flag to set the use of the direction indicators on of off. If it is Off, then the

participants does not apply its direction indicators. If it is On, then the participant applies

direction indicators if necessary.

Indicator may be read. If set it is used to apply the direction indicators, independently from

the indicator control of the autonomous agent. Possible values are IndicatorOff, IndicatorLeft,

IndicatorRight or IndicatorAlarm.

SwingPhase can be set and read. It represents the time the car takes to swerve from a

certain lateral position to another one. Normally this is a random process. It can be set

however to fully control the time it takes to swerve to another lateral position. If set to zero,

the car does not swerve anymore.

SwingAmplitude can be set and read. Represents the lateral distance (from the preferred

lateral position) within which the car swerves as a random process. If set to zero, the car

does not swerve anymore.

Xpos gives the X coordinate position of the car

Ypos gives the Y coordinate position of the car

InList can only be read and returns True or False depending on whether the car is in the

Carnetsoft BV Description functionality scenario scripting language

51

current traffic list.

IsdType is a type of vehicle wit a specific brand and color

IsdCat is a category of vehicle (f.i. a bus = 20, a bicycle = 30 and a pedestrian = 40).

DumVar0 to DumVar4 are variables that can be read and set to store a temporary value.

These variables serve as buffers to store information.

12 Suggestions for debugging

• When debugging the script files, the following steps are important:

1) locate the line in scentemp##001 of the first error.

2) find this error in your script source files

3) fix the error

4) run the script again to test for errors

Do this error by error.

• A frequent type of error is the use of a reserved keyword as a variablename, as in

Var { SwingPhase; }

This is illegal because SwingPhase is a reserved keyword.

• It is important to adhere to the following order of blocks:

Define Scen[..] {

 Var { ..;..; }

 Start {

 K

 }

 Do {

 K

 }

 End {

 K

 }

 // followed by a list of actions

 Define Action[0] {

 Start {

 K

 }

 End {

 K

 }

 }

 Define Action[1] {

 Start {

 K

 }

 End {

 K

 }

 }

}

Carnetsoft BV Description functionality scenario scripting language

52

• Keep in mind that userdefined variables have either local scope or global scope. If a

variable has global scope, it is defined outside a scenario. If it has local scope it can be

defined anywhere within a scenario, including an action. So local scope refers to ‘local

within the scenario’ and not to ‘local within an action’.

Define Scen[..] {

 Define Action[0] {

 Var { ThisVar; }

 }

 Define Action[1] {

 Var { ThisVar; } // illegal because ThisVar has already been defined

 }

}

• Make use that all scenarios have a unique ID. Also make sure hat all actions defined

within a scenario have a unique ID. So the following may result in problems:

Define Scen[100] {

}

Define Scen[101] {

}

Define Scen[100] { // Scen[100] has already been defined

}

