Research driving simulator

Create, test and run advanced experiments

The Carnetsoft research driving simulator is a programmable, fully interactive driving simulator with 210 degrees surround graphics HD rendering over 6 channels: left, center and right view plus 3 rearview mirrors on each monitor. That’s a resolution of 5760×1080 pixels. Click here to ask a question,  order a simulator or just the software.

Create and run car driving behaviour and human factors experiments, and increase your productivity as a researcher. Experiments can be created quickly and results are analyzed efficiently. The toolset enables you to define experiments in a wide range of subjects.

Experiments can be created in the domains of

  • Experimental Psychology (studies on attention, vigilance, workload, perception),
  • Social Psychology (measures to influence driving behaviour),
  • Clinical Psychology and Psychiatry (effects on exposure on phobias and anxieties while driving),
  • Human Factors research (interfaces, secondary tasks, workload, autonomous driving),
  • Pharmacology (effects of alcohol and drugs on behaviour), studies on training and learning, studies on driver fitness,
  • Studies into autonomous driving and driver assistance systems,
  • etc.

And all of this for a price every human factors and experimental psychology research group can afford. The software costs 2500 euro, which is a fraction of the cost of comparable research driving simulator software licences.  In addition to testing your research questions and helping you to make valuable contributions to science and create publications, this research instrument is very suitable for education and training of research skills. Carnetsoft takes active measures to reduce the incidence of simulator sickness.

The strong points of this research driving simulator software

  • The most affordable research simulator in the market: the complete research simulator software modules plus runtime simulation software costs only €2500, which is a fraction of the price of comparable alternatives
  • flexible and quick design and testing of experiment with an easy-to-learn script language
  • extensive tools, including a database designer to create roads and virtual environments
  • a large number of variables can be sampled including time headway, time to collision, brake reaction time, time to line crossing, etc. In addition you can create your own dependent variables to sample with 10 Hz, or do all data analysis in real-time during the experiment, and save the output in an external file
  • 3-display surround graphics of high quality with 5760×1080 resolution, running at 60 Hz
  • realistic artificially intelligent traffic
  • a large number of standard databases and experiment scripts that will get you running quickly
  • python scripts of the rendering engine are included so you have full access to the graphics rendering
  • flexible support via email and skype/teamviewer that greatly helps you with the development of experiments.
  • various levels of autonomous driving and driving support can be selected and programmed.

 Examples of recent publications

The research simulator of Carnetsoft has been used by researchers to produce a large number of publications in very different fields of driver centered behavioural research. These studies include experiments that have used the research simulator software together with eye trackers, MATLAB applications and EEG recordings. Various different fields of science have been studied, such as research aimed at theory development, driver assistance systems and autonomous driving, older drivers, dyslexia, virtual reality, multitasking and driver distraction, driver fatigue and vigilance, etc.

Below is a list of recent examples of scientific publications with research that has applied the Carnetsoft research simulator:

Examples of earlier publications

The scenario generation, traffic generation, data analyses and storage and real time simulation software is based on the research simulator software that was developed in the 90ties at the University of Groningen. A number of examples of publications based on an earlier version of this simulator software:

  • Van Winsum. W., (1998). Preferred time headway in car-following and individual differences in perceptual-motor skills. Perceptual and Motor Skills, 87, 863-873.
  • van Winsum. W., de Waard, D. & Brookhuis, K.A. (1999). Lane change manoeuvres and safety margins. Transportation Research Part F 2(1999), 139-149.
  • van Winsum. W., Brookhuis, K.A. & de Waard, D. (1999). A comparison of different ways to approximate Time-to-Line Crossing (TLC) during car driving. Accident Analysis and Prevention, 32, 57-56.
  • Van Winsum, W. & Brouwer, W. (1997). Time headway in car following and operational performance during unexpected braking.Perceptual and Motor Skills, 84, 1247-1257.
  • Van Winsum, W. & Heino, A. (1996). Choice of time-headway in car-following and the role of time-to-collision information in braking. Ergonomics, 39(4), 579-592.
  • Van Winsum, W. & Godthelp, H. (1996). Speed choice and steering behavior in curve driving. Human Factors, 38(3), 434-441.

Since then this software has been extended and especially  the graphics has been improved substantially . It has laid the groundworks for numerous scientific publications by researchers all over the world.

 Academic users

can be found everywhere in the world, for example:

– University Hospital Bern (Switserland)
– University of Nottingham (UK)
– Oxford Brookes University (UK)
– Healthlink Hong Kong
– University of South Carolina (US)
– University of Oklahoma (US)
– University of Thessaly (Greece)
– Deutsche Sporthochschule Koln (Germany)
– Technische Universitat Chemnitz (Germany)
– University Hospital Seoul (Korea)
– University of Valencia (Spain)
– TMU Taipei (Taiwan)
– NTNU Trondheim (Norway)
– National University of Singapore
– Qatar University
and many more.


Free support

The script language allows you to access a wide range of variables during runtime and gives you all the flexibility you need. Installation on your computer is included in the price.

Support voucher

A support voucher gives access to 5 hours of paid support.  A support voucher costs €350,-. The user can purchase a support voucher any time and the 5 hours of support can be freely used when the user wants. After the 5 hours of support are used, the user will be notified via email. The support voucher expires 2 years after the data of purchase. The following types of support are included:

  • Carnetsoft will answer questions, via email, concerning the use of existing functionality within 2 working days (except for holiday periods). This may refer to how to create or modify graphical databases (Virtual Environments), use script functions to define an experiment, traffic, interactions between the simulator and the user or external programs, data storage and analysis etc.
  • Carnetsoft will provide scripts for experiments or debug scripts provided by the user.
  • Carnetsoft will modify existing databases (Virtual Environments) or make new databases according to the specifications of the user.
Experiment creation

Carnetsoft can also develop complete behavioural experiments for you:  if you want to have your experiment developed by an experienced researcher/developer, Carnetsoft can do that for you. Because of the in-house development and experience this can often be done faster and cheaper than when you  create the experiments yourself. So if you are in a hurry or if you need the skills of an experienced developer. This concerns:

  • creation/modification of visual databases (virtual environments)
  • creation of scenario generation scripts
  • creation of subject and data specification files, so have all experiment files for all subjects and conditions ready to use
  • modification of runtime simulation and graphics software

If you send the specifications of the experiment you’ll receive an estimation of the required development time and a quote. As an indication of the cost involved: an experiment normally can be prepared by Carnetsoft in 20 to 40 man hours which amounts to a price of €1500 to €3000. Included are the sources of the experiment scenario scripts and databases, you you can always modify them.

Check here for full information on support.


course research driving simulatorexperiment preparation research driving simulatorroad design software research driving simulator
scenario generation script language research driving simulatordata analysis research driving simulatorsupport agreement research driving simulator

Information in Dutch (rijsimulator) can be found on a separate page.

—For more details on prices etc., continue on next research driving simulator page

Go to:

Research simulator- Page 1

Research simulator- Page 2

Research simulator- Page 3

Research simulator- Page 4

Related blog posts:

Research simulator applications
Research simulator applications
Research driving simulators are used by research institutes, universities and car manufacturers. The typical advantages of using research simulators over real cars in the real world are: Control over the environment and experimental conditions....
Read more ?
Distracted driving simulator
Distracted driving simulator
Distracted driving is, next to DUI (driving under the influence), one of the main causes of car driving accidents. Distracted driving is the act of driving while engaged in other activities—such as looking after children, texting, talking on...
Read more ?
Drinking while driving
Drinking while driving
Drinking while driving (DUI) is still one of the main factors in accident causation. Alcohol is involved in  over 25% of all car crashes in the US and a number of European countries. This...
Read more ?
Accident risk of young drivers
Accident risk of young drivers
Young drivers, especially males, from 18 to 24 are dramatically more often involved in accidents compared to drivers of other age groups (Evans, 1991). This overinvolvement of young male drivers in the accident statistics...
Read more ?
Skills and accident involvement
Skills and accident involvement
The concept of accident proneness has been in vogue from the 1920s up until the 1960s, and played an important role in theories of driver behaviour. McKenna (1983) presented a conceptual analysis of accident...
Read more ?